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More crime in cities? On the scaling laws 
of crime and the inadequacy of per capita 
rankings—a cross‑country study
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Abstract 

Crime rates per capita are used virtually everywhere to rank and compare cities. However, their usage relies on a 
strong linear assumption that crime increases at the same pace as the number of people in a region. In this paper, 
we demonstrate that using per capita rates to rank cities can produce substantially different rankings from rankings 
adjusted for population size. We analyze the population–crime relationship in cities across 12 countries and assess the 
impact of per capita measurements on crime analyses, depending on the type of offense. In most countries, we find 
that theft increases superlinearly with population size, whereas burglary increases linearly. Our results reveal that per 
capita rankings can differ from population-adjusted rankings such that they disagree in approximately half of the top 
10 most dangerous cities in the data analyzed here. Hence, we advise caution when using crime rates per capita to 
rank cities and recommend evaluating the linear plausibility before doing so.
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Introduction
In criminology, it is generally accepted that crime occurs 
more often in more populated regions. In one of the 
first works of modern criminology, Balbi and Guerry 
examined the crime distribution across France in 1825, 
revealing that some areas experienced more crime than 
others (Balbi and Guerry, 1829; Friendly, 2007). To com-
pare these areas, they realized the need to adjust for 
population size and analyzed crime rates instead of raw 
numbers. This method eliminates the linear effect of 
population size on crime numbers and has been used to 
measure crime and compare cities almost everywhere—
from academia to news outlets  (Hall, 2016; Park and 
Katz, 2016; Siegel, 2011). However, this approach over-
looks the potential nonlinear effects of population and, 

more importantly, exposes our limited understanding of 
the population–crime relationship.

Though different criminology theories expect a rela-
tionship between population size and crime, they tend to 
disagree on how crime increases with population (Cham-
lin and Cochran, 2004; Rotolo and Tittle, 2006). These 
theories predict divergent population effects, such as lin-
ear and superlinear crime growth. Despite these theoreti-
cal disputes, however, crime rates per capita are broadly 
used by assuming that crime increases linearly with the 
number of people in a region. Crucially, crime rates 
are often deemed to be a standard means of comparing 
crime in cities.

Yet the widespread adoption of crime rates is arguably 
due more to tradition (Boivin, 2013) rather than its abil-
ity to remove the effects of population size. Many urban 
indicators, including crime, have already been shown 
to increase nonlinearly with population size  (Betten-
court et  al., 2007). When we violate the linear assump-
tion and use rates, we deal with quantities that still have 
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population effects, thus introducing an artifactual bias 
into rankings and analyses.

Despite this inadequacy, we only have a limited under-
standing of the impact of nonlinearity on crime rates. 
Although previous works have investigated popula-
tion–crime relationships extensively (Alves et al., 2013a; 
Bettencourt et al. 2010; Chang et al. 2019; Gomez-Liev-
ano et  al., 2012; Hanley et  al., 2016; Yang et  al., 2019), 
they have failed to quantify the impact of nonlinear rela-
tionships on rankings and restricted their analyses to 
either specific offenses or countries. The lack of compre-
hensive systematic studies has limited our knowledge on 
how the linear assumption influences crime analyses and, 
more critically, has prevented us from better understand-
ing the effect of population on crime.

In this work, we analyze burglaries and thefts in 12 
countries and investigate how crime rates per capita can 
misrepresent cities in rankings. Instead of assuming that 
the population–crime relationship is linear, we estimate 
this relationship from data using probabilistic scaling 
analysis (Leitão et al., 2016). We use our estimates to rank 
cities while adjusting for population size, and we then 
examine how these rankings differ from rankings based 
on rates per capita. In our results, we find that the lin-
ear assumption is unjustified. We show that using crime 
rates to rank cities can lead to rankings that considerably 
differ from rankings adjusted for population size. Finally, 
our results reveal contrasting growths of burglaries and 
thefts with population size, implying that different crime 
dynamics can produce distinct features at the city level. 
Our work sheds light on the population–crime relation-
ship and suggests caution in using crime rates per capita.

Crime and population size
Different theoretical perspectives predict the emergence 
of a relationship between population size and crime. 
Three main criminology theories expect this relationship: 
structural, social control, and subcultural  (Chamlin and 
Cochran, 2004; Rotolo and Tittle, 2006). In general, these 
perspectives agree that variations in the number of peo-
ple in a region have an impact on the way people interact 
with one another. These theories, however, differ in the 
types of changes in social interaction and how they can 
produce a population–crime relationship.

From a structural perspective, a higher number of peo-
ple increases the chances of social interaction, which 
increases the occurrence of crime. Two distinct ration-
ales can explain such an increase. Mayhew and Levinger 
(1976) posit that crime is a product of human contact: 
more interaction leads to higher chances of individuals 
being exploited, offended, or harmed. They claim that a 

larger population size raises the number of opportunities 
for interaction at an increasing rate, which would lead to 
a superlinear crime growth with population size (Cham-
lin and Cochran, 2004). In contrast, Blau (1977) implies a 
linear population–crime relationship. He posits that pop-
ulation aggregation reduces spatial distance among indi-
viduals, thereby promoting different social associations 
such as victimization. At the same time, as conflictive 
association increases, other integrative associations also 
increase, leading to a linear growth of crime  (Chamlin 
and Cochran, 2004). Notably, the structural perspective 
focuses on the quantitative consequences of population 
growth.

The social control perspective advocates that changes 
in population size have a qualitative impact on social 
relations, which weakens informal social control mecha-
nisms that inhibit crime (Groff, 2015). From this perspec-
tive, crime relates to two aspect of a population: size and 
stability. A larger population size leads to higher popula-
tion density and heterogeneity—not only do individuals 
have more opportunities for social contacts, but they are 
also often surrounded by strangers  (Wirth, 1938). This 
situation makes social integration difficult and promotes 
a high anonymity, which encourages criminal impulses 
and harms a community’s ability to socially constrain 
misbehavior  (Freudenburg, 1986; Sampson, 1986). Simi-
larly, from a systemic viewpoint, any change (i.e., increase 
or decrease) in population size can have an impact on 
crime numbers (Rotolo and Tittle, 2006). From this view-
point, the understanding is that regular and sustained 
social interactions produce community networks with 
effective mechanisms of social control (Bursik and Webb, 
1982). Population instability, however, hinders the con-
struction of such networks. In communities with unsta-
ble population size, residents avoid socially investing in 
their neighborhoods, which hurts community organiza-
tion and weakens social control, thus increasing misbe-
havior and crime (Miethe et al., 1991; Sampson, 1988).

Both social-control and structural perspectives solely 
focus on individuals’ interactions without consider-
ing their private interests. These perspectives pay little 
attention to how unconventional interests increase with 
urbanization  (Fischer, 1975) and how these interests 
relate to misbehavior.

In contrast, the subcultural perspective advocates that 
population concentration brings together individuals with 
shared interests, which produces private social networks 
built around these interests, thereby promoting social sup-
port for behavioral choices. Fischer (1975) posits that pop-
ulation size has an impact on the creation, diffusion, and 
intensification of unconventional interests. He proposes 
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that large populations have a sufficient number of people 
with specific shared interests, thus enabling social interac-
tion and lead to the emergence of subcultures. The social 
networks surrounding a subculture bring normative expec-
tations that increase the likelihood of misbehavior and 
crime (Fischer, 1975,, 1995).

These three perspectives—structural, social control, and 
subcultural—expect that a higher number of people in an 
area leads to more crime in that area. In the case of cities, 
we know that population size is indeed a strong predictor 
of crime (Bettencourt et al., 2007) . The existence of a pop-
ulation–crime relationship implies that we must adjust for 
population size to analyze crime in cities properly.

Crime rates per capita
In the literature, the typical solution for removing the effect 
of population size from crime numbers is to use ratios such 
as the following:

This ratio is often used together with a multiplier that 
contextualizes the quantity (e.g., crime per 100,000 
inhabitants;  Boivin, 2013). However, even though crime 
rates are popularly used, they present at least two inad-
equacies. First, the way in which we define population 
affects crime rates. The common approach is to use resi-
dent population (e.g., census data) to estimate rates, but 
this practice can distort the picture of crime in a place: 
crime is not limited to residents  (Gibbs and Erickson, 
1976), and cities attract a substantial number of non-res-
idents  (Stults and Hasbrouck, 2015). Instead, research-
ers suggest using ambient population  (Andresen, 2006,, 
2011) and accounting for criminal opportunities, which 
depends on the type of crime (Boggs, 1965; Clarke, 1984; 
Cohen et al., 1985; Harries, 1981).

Second, Eq. (1) assumes that the population–crime rela-
tionship is linear. The rationale behind this equation is that 
we have a relationship of the form

which means that crime can be linearly approximated via 
population. Given this linear assumption, when we divide 
crime by population in Eq.  (1), we are trying to cancel 
out the effect of population on crime. This assumption 
implies that crime increases at the same pace as popu-
lation growth. However, not all theoretical perspectives 
agree with this type of growth, and many urban indica-
tors, including crime, have been shown to increase with 
population size in a nonlinear fashion (Bettencourt et al., 
2007).

(1)crime rate per capita =
crime

population
.

(2)crime ∼ population,

Cities and scaling laws
Much research has been devoted to understanding urban 
growth and its impact on indicators such as gross domes-
tic product, total wages, electrical consumption, and 
crime (Bettencourt et al., 2007, 2010; Bettencourt, 2013; 
Gomez-Lievano et  al., 2016). Bettencourt et  al. (2007) 
have found that a city’s population size, denoted by N, is 
a strong predictor of its urban indicators, denoted by Y, 
exhibiting the following relationship:

This so-called scaling law tells us that, given the size of a 
city, we expect certain levels of wealth creation, knowl-
edge production, criminality, and other urban aspects. 
This expectation suggests general processes underlying 
urban development  (Bettencourt et  al., 2013) and indi-
cates that regularities exist in cities despite their idiosyn-
crasies (Oliveira and Menezes, 2019). To understand this 
scaling and the urban processes better, we can examine 
the exponent β , which describes how an urban indicator 
grows with population size.

Bettencourt et  al. (2007) presented evidence that dif-
ferent categories of urban indicators exhibit distinct 
growth regimes. They showed that social indicators grow 
faster than infrastructural ones (see Fig. 1A). Specifically, 
social indicators, such as the number of patents and total 
wages, increase superlinearly with population size (i.e., 
β > 1 ), meaning that these indicators grow at an increas-
ing rate with population. In the case of infrastructural 
aspects (e.g., road surface, length of electrical cables), 
an economy of scale exists. As cities grow in population 
size, these urban indicators increase at a slower pace 
with β < 1 (i.e., sublinearly). In both scenarios, because 
of nonlinearity, we should be careful with per capita 
analyses.

When we violate the linear assumption of per capita 
ratios, we deal with quantities that can misrepresent 
an urban indicator. To demonstrate this, we use Eq.  (3) 
to define the per capita rate C of an urban indicator as 
follows:

which implies that rates are independent from popula-
tion only when β equals to one—when β  = 1 , population 
is not cancelled out from the equation. In these nonlin-
ear cases, per capita rates can inflate or deflate the rep-
resentation of an urban indicator depending on β (see 
Fig. 1B). This misrepresentation occurs because popula-
tion still has an effect on rates. By definition, we expect 
that per capita rates are higher in larger cities when 

(3)Y ∼ Nβ .

C =
Y

N
∼ Nβ−1,
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β > 1 , whereas when β < 1 , we expect larger cities to 
have lower rates. When we use rates to compare cities in 
nonlinear situations, we introduce an artifactual bias. To 
compare cities properly, previous works have proposed 
scaled-adjusted indicators that account for population 
size  (Alves et  al., 2013a; Bettencourt et  al., 2010), sup-
porting the need for population adjustment but failing to 
quantify the impact of the linear assumption on rankings 
of urban indicators.

More crime in cities?
In the case of crime, researchers have found a super-
linear growth with population size. Bettencourt et  al. 
(2007) showed that serious crime in the United States 
exhibits superlinear scaling with exponent β ≈ 1.16 , and 
some evidence has confirmed similar superlinearity for 
homicides in Brazil, Colombia, and Mexico (Alves et al., 
2013b; Gomez-Lievano et al., 2012). Previous works have 
also found that different kinds of crime in the United 
Kingdom and in the United States present nonlinear scal-
ing relationships (Chang et al., 2019; Hanley et al., 2016; 

Yang et al., 2019). Remarkably, the existence of these scal-
ing laws of crime suggests fundamental urban processes 
that relate to crime, independent of cities’ particularities.

This regularity manifests itself in the so-called scale-
invariance property of scaling laws. It is possible to show 
that Eq. (3) holds the following property:

where g(κ) does not depend on N (Thurner et al., 2018). 
From a modeling perspective, this relationship reveals 
two aspects about crime. First, we can predict crime 
numbers in cities via a populational scale transformation 
κ  (Bettencourt et al., 2013). This transformation is inde-
pendent of population size but depends on β , which tunes 
the relative increase in crime such that g(κ) = κβ . Sec-
ond, Eq. (4) implies that crime is present in any city, inde-
pendent of size. This implication arguably relates to the 
Durkheimian concept of crime normalcy in that crime is 
seen as a normal and necessary phenomenon in societies, 
provided that its numbers are not unusually high  (Dur-
kheim, 1895). Broadly speaking, the scale-invariance 
property tells us that crime in cities is associated with 
population in a somewhat predictable fashion. Crucially, 
this property might give the impression that such regu-
larity is independent of crime type.

However, different types of crime are connected to 
social mechanisms in different ways  (Hipp and Steen-
beek, 2016) and exhibit unique temporal  (Miethe et  al., 
2005; Oliveira et  al., 2018) and spatial characteris-
tics  (Andresen and Linning, 2012; Oliveira et  al., 2015, 
2017; White et  al., 2014). It is plausible that the scaling 
laws of crime depend on crime type. Nevertheless, the 
literature has mostly focused on either specific countries 
or crime types. Few studies have systematically exam-
ined the scaling of different crime types, and the focus 
on specific countries has prevented us from better under-
standing the impact of population on crime. Likewise, 
the lack of a comprehensive systematic study has limited 
our knowledge about the impact of the linear assumption 
on crime rates. We still fail to understand how per capita 
analyses can misrepresent cities in nonlinear scenarios.

In this work, we characterize the scaling laws of bur-
glary and theft in 12 countries and investigate how crime 
rates per capita can misrepresent cities in rankings. 
Instead of assuming that the population–crime relation-
ship is linear, as described in Eq.  (2), we investigate this 
relationship under its functional form as follows:

(4)Y (κN ) = g(κ)Y (N ),

crime ∼ f (population).
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Fig. 1  Urban scaling laws and rates per capita. The way in which 
urban indicators increase with population size depends on the class 
of the indicator. A Social aspects, such as crime and total wages, 
increase superlinearly with population size, whereas infrastructural 
indicators (e.g., road length) increase sublinearly. B In nonlinear 
scenarios, rates per capita still depend on population size
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Specifically, we examine the plausibility of scaling laws 
to describe the population–crime relationship. To esti-
mate the scaling laws, we use probabilistic scaling analy-
sis, which enables us to characterize the scaling laws of 
crime. We use our estimates to rank cities while account-
ing for the effects of population size. Finally, we compare 
these adjusted rankings with rankings based on per-cap-
ita rates (i.e., with the linear assumption).

Results
We use data from 12 countries to investigate the rela-
tionship between population size and crime at the city 
level (see the appendix for data sources). Specifically, 
we examine annual data from Belgium, Canada, Colom-
bia, Denmark, France, Italy, Mexico, Portugal, South 
Africa, Spain, the United Kingdom, and the United States 
(see Table  1). In this work, we characterize how crime 
increases with population size in each country, focusing 
on burglary and theft. We analyze both crimes in all con-
sidered countries, except Mexico, Portugal, and Spain, 
where we only have data for one type of offense.

The scaling laws of crime in cities
To assess the relationship between crime Y and popula-
tion size N (see Fig.  2), we model P(Y|N) using proba-
bilistic scaling analysis (see the Methods section). In 
our study, we examine whether this relationship follows 
the general form of Y ∼ Nβ . First, we estimate β from 
data, and we then evaluate the plausibility of the model 
( p > 0.05 ) and the evidence for nonlinearity (i.e., β  = 1 ). 
Our results reveal that Y and N often exhibit a nonlinear 
relationship, depending on the type of offense.

In most of the considered countries, theft increases 
with population size superlinearly, whereas burglary 
tends to increase linearly (see Fig. 3). Precisely, in 9 out 
of 11 countries, we find that β for theft is above one; our 
results indicate linearity for theft (i.e., absence of nonlin-
ear plausibility) in Canada and South Africa. In the case 
of burglary, we are unable to reject linearity in 7 out of 
10 countries; in France and the United Kingdom, we find 
superlinearity, and in Canada, sublinearity. In almost all 
considered data sets, these estimates are consistent over 
two consecutive years in the countries for which we have 
data for different years (see Appendix 1).

Our results suggest that the general form of Y ∼ Nβ 
is plausible in most countries, but that this compatibil-
ity depends on the offense. We find that burglary data 
are compatible with the model ( p > 0.05 ) in 80% of the 
considered countries. In the case of theft, the superlinear 
models are compatible with data in five out of nine coun-
tries. We note that in Canada and South Africa, where we 
are unable to reject linearity for theft, the linear model 
also lacks compatibility with data.

We find that the estimates of β for each offense often 
have different values across countries—for example, the 
superlinear estimates of β for theft range from 1.10 to 
1.67. However, when we analyze each country separately, 
we find that β for theft tends to be larger than β for bur-
glary in each country, except for France and the United 
Kingdom.

In summary, we find evidence for a nonlinear rela-
tionship between crime and population size in more 
than half of the considered data sets. Our results indi-
cate that crime often increases with population size at a 
pace that is different from per capita. This relationship 

Table 1  Burglary and theft annual statistics in 12 countries

Number of data points n, sample mean ȳ , sample standard deviation S, and maximum value ymax

Country n Theft Burglary

ȳ S ymax ȳ S ymax

Belgium 588 60.84 286.51 4397 95.60 209.02 2721

Canada 283 1115.14 3393.88 37,150 293.90 791.13 7782

Colombia 513 182.04 1514.68 36,306 40.08 228.06 4856

Denmark 98 1157.67 3851.29 38,011 330.71 330.60 2157

France 100 8311.12 12,400.34 108,846 2389.94 2515.24 12,511

Italy 107 17,470.72 30,860.27 218,052 2217.50 2642.61 18,101

Mexico 1659 237.56 959.59 14,999 – – –

Portugal 279 – – – 51.38 86.91 850

South Africa 199 2305.23 8758.52 93,793 1190.03 3212.93 28,143

Spain 144 7846.72 25,111.99 236,026 – – –

United Kingdom 313 1763.43 1965.61 19,766 620.98 685.40 4825

United States 8337 471.82 2345.27 108,376 127.33 626.16 19,859
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implies that analyses with a linear assumption might 
create distorted pictures of crime in cities. To under-
stand such distortions, we must examine how nonlin-
earity influences comparisons of crime in cities, when 
linearity is assumed.

The inadequacy of crime rates and per capita rankings
We investigate how crime rates of the form C = Y /N  
introduce bias in the comparisons and rankings of cit-
ies. To understand this bias, we use Eq.  (3) to rewrite 
crime rate as C ∼ Nβ−1 . This relationship implies that 
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crime rate depends on population size when β  = 1 . For 
example, in Portugal and Denmark, this dependency is 
clear when we analyze burglary and theft numbers (see 
Fig. 4). In the case of burglary in Portugal, linearity makes 
C independent of population size. In Denmark, since 
theft increases superlinearly, we expect rates to increase 
with population size. In this country, based on data, the 
expected theft rate of a small city is lower than the rates 
of larger cities. We must account for this tendency in 
order to compare crime in cities; otherwise, we introduce 
bias against larger cities.

To account for the population–crime relationship 
found in data, we compare cities using the model P(Y|N) 
as the baseline. We compare the number of crimes in a 
city with the expectation of the model. For each city i 
with population size ni , we evaluate the z score of the city 

with respect to P(Y |N = ni) . The z score indicates how 
much more or less crime a particular city has in compari-
son to cities with a similar population size, as expected 
by the model. These z scores enable us to compare cities 
in a country and rank them while accounting for popula-
tion size differences. In contrast, crime rates per capita 
only adjust for population size in the linear scenario. This 
approach is similar to previously proposed indicators that 
adjust for population size (Alves et al., 2013a; Bettencourt 
et al., 2010). In our case, the adjustment also accounts for 
the variance. We denote this kind of analysis as a com-
parison adjusted for the population–crime relationship.

For example, in Denmark, the theft rate in the munici-
pality of Aalborg ( ≈ 0.0186 ) is almost the same as in Sol-
rød ( ≈ 0.0188 ). However, less crime occurs in Aalborg 
than expected for cities of a similar size, while crime in 

0.6 0.8 1.0 1.2 1.4 1.6 1.8
β

United States

United Kingdom

Spain

South Africa

Portugal
Mexico

Italy

France

Denmark

Colombia

Canada
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Theft Burglary
Fig. 3  The scaling laws of crime. We find evidence for a nonlinear relationship between crime and population size in more than half of the data 
sets. In most considered countries, theft exhibits superlinearity, whereas burglary tends to display linearity. In the plot, the lines represent the error 
bars for the estimated β of each country–crime for two consecutive years; circles denote a lack of nonlinearity plausibility; triangles represent 
superlinearity, and upside-down triangles indicate sublinearity
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Solrød is above the model expectation (see Fig. 4B). This 
disagreement arises because of the different population 
sizes. Since Aalborg is more than 10 times larger than 
Solrød, we expect rates in Aalborg to be larger than in 
Solrød. When we account for this tendency and evaluate 
their z scores, we find that the z score of Aalborg is −2.47 , 
whereas in Solrød the z score is 2.43.

Such inconsistencies have an impact on the crime 
rankings of cities. The municipality of Aarhus, in Den-
mark, for example, is ranked among the top 12 cities 
with the highest theft rate in the country. However, when 
we account for population–crime relationship using z 
scores, we find that Aarhus is only at the end of the top 
54 rankings.

To understand these variations systematically, we 
compare rankings based on crime rates with rankings 
that account for the population–crime relationship 
(i.e., adjusted rankings). Our results reveal that these 

two rankings create distinct representations of cities. 
For each considered data set, we rank cities based on 
their z scores and crime rates C, and we then examine 
the change in the rank of each city. According to our 
findings, the positions of the cities can change sub-
stantially. For instance, in Italy, half of the cities have 
theft rate ranks that diverge in at least 11 positions 
from the adjusted ranking  (Fig.  5A). This disagree-
ment means that these rankings disagree for approxi-
mately half of the top 10 most dangerous cities.

We evaluate these discrepancies by using the Kend-
all rank correlation coefficient τ to measure the simi-
larity between crime rates and adjusted rankings in the 
considered countries. We find that these rankings can 
differ considerably but converge when β ≈ 1 . The τ coef-
ficients for the data sets range from 0.6 to 1.0, exhibiting 
a dependency on the type of crime; or more specifically, 
on the scaling (Fig. 5B). As expected, as β approaches 1, 
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the rankings are more similar to one another. For exam-
ple, in Italy, in contrast to theft, the burglary rate ranking 
of half of the cities only differs from the adjusted ranking 
in a maximum of two positions (Fig. 5A).

Discussion and conclusion
Despite its popularity, comparing cities via crime rates 
without accounting for population size has a strong 
assumption that crime increases at the same pace as the 
number of people in a region. Though previous works 
have widely investigated the population–crime relation-
ship, they have failed to quantify the impact of nonlinear 
relationships on rankings and restricted their analyses to 
either specific offenses or countries. In this work, we ana-
lyze crime in different countries to investigate how crime 
grows with population size and how the widespread 
assumption of linear growth influences cities’ rankings.

First, we analyzed crime in cities from 12 countries 
to characterize the population–crime relationship sta-
tistically, examining the plausibility of scaling laws to 
describe this relationship. Then, we used our estimates to 
rank cities and compared how those rankings differ from 
rankings based on rates per capita.

Our results showed that the assumption of linear crime 
growth is unfounded. In more than half of the consid-
ered data sets, we found evidence for nonlinear crime 
growth—that is, crime often increases with population 
size at a different pace than per capita. This nonlinearity 
introduces a population effect into crime rates, influenc-
ing rankings. We demonstrated that using crime rates 
to rank cities substantially differs from ranking cities 
adjusted for population size.

These findings imply that using crime rates per capita—
though deemed a standard measure in criminal justice 
statistics—can create a distorted view of cities’ rankings. 
For example, in superlinear scenarios, we expect larger 
cities to have higher crime rates. In this case, when we 
use rates to rank cities, we build rankings whereby large 
cities are at the top. But, these cities might not experience 
more crime than what we expect from places with a simi-
lar population size. It is an artifactual bias introduced by 
population effects still present in crime rates.

Such effects arise from nonlinear population effects 
that persist in rates due to the linear assumption. This 
assumption is more than just a statistical subtlety. By 
assuming linearity, we essentially overlook cities’ con-
text: we ignore the actual impact of population size 
on crime and how this impact depends on crime type, 
country, and aggregation units, among other things. 
For instance, our results indicate that in thefts, linearity 
is an exception rather than the rule. The indiscriminate 
use of crime rates neglects significant population–
crime interactions that should be considered in order 
to compare crime in cities properly.

As a result of this inadequacy, we advise caution when 
using crime rates per capita to compare cities. We rec-
ommend evaluating linear plausibility before compar-
ing crime rates. In general, we suggest comparing cities 
via the z scores computed using the approach  (Leitão 
et al., 2016) discussed in the manuscript, thereby avoid-
ing crime rates. It is important to emphasize that this 
inadequacy in rates is relevant only when comparing 
cities of different population sizes. In analyses without 
comparisons, a place’s crime rate can be seen as a rough 
indicator that contextualizes crime numbers relative to 
population size. Additionally, when cities have the same 
size, comparing crime rates boils down to comparing 
raw crime numbers.
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Table 2  β estimates for the case of thefts using log-normal and normal fluctuations

Table 3  β estimates for the case of burglaries using log-normal and normal fluctuations
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In summary, in this work, we shed light on the popu-
lation–crime relationship. The linear assumption is 
exhausted and expired. We have resounding evidence of 
nonlinearity in crime, which disallows us from unjusti-
fiably assuming linearity. In light of our results, we also 
note that the scaling laws are plausible models only for 
half of the considered data sets. Better models are thus 
needed—in particular, models that account for the fact 
that different crime types relate to population size differ-
ently. More adequate models will help us better under-
stand the relationship between population and crime.

Limitations
Our work presents limitations related to the way in 
which we define population, crime, and cities. First, we 
note that crime rates depend on how we define popula-
tion; in our study, we define it as the resident popula-
tion (i.e., census data). However, crime is not limited to 
residents  (Gibbs and Erickson, 1976), and cities attract 
a significant number of non-residents  (Stults and Has-
brouck, 2015). We highlight that this limitation is not 
specific to our study, and crime rates are often measured 
using resident population. Previous works have suggested 
using ambient population and accounting for the number 
of targets  (Andresen, 2006, 2011; Boggs, 1965). Collect-
ing this data, however, is challenging, especially when 
dealing with different countries. Future research should 
investigate crime rates and scaling laws using other defi-
nitions of population, particularly using social media 
data (Malleson and Andresen, 2016; Pacheco et al., 2017).

Second, scaling analyses depend on the definition of 
what constitutes a city  (Arcaute et  al., 2014). In the lit-
erature, definitions include legal divisions (e.g., coun-
ties, municipalities) and data-driven delineations based 
on population density and economic interactions  (Cot-
tineau et al., 2017). It is possible that different city defini-
tions yield divergent scaling regimes for the same urban 
indicator  (Louf and Barthelemy, 2014). In our work, we 
only have access to crime data regarding specific aggre-
gation units, and we thus define cities based on official 
legal divisions by using census data. City definitions in 
our analysis consequently depend on the country. We 
emphasize that we investigate whether per capita rank-
ings are justified under a given city definition. Neverthe-
less, we believe that even though the use of other city 
definitions might change our quantitative results, our 
qualitative results are robust: the inadequacy of crime 
rates is independent of city definitions. When analyz-
ing different definitions of cities, future research should 
examine scaling divergences as an opportunity to under-
stand the population–crime relationship better.

Finally, cross-national crime analyses have methodo-
logical challenges due to international differences in 

crime definitions, police and court practices, and report-
ing rates, among other things  (Takala and Aromaa, 
2008). Although we avoid direct comparisons of coun-
tries’ absolute crime numbers in our work, we compare 
their growth exponents. In this comparison, we assume 
that cross-national differences have a negligible impact 
on how crime increases with population, particularly 
regarding the crime types we analyzed. We understand 
that some offenses (e.g., sexual assault, drug trafficking) 
are more sensitive to cross-national comparisons than 
the offenses we analyzed here  (Harrendorf et  al., 2010; 
Harrendorf, 2018). Collecting high-quality international 
comparative data could help future works in disentan-
gling cross-national differences.

Methods
Probabilistic scaling analysis
We use probabilistic scaling analysis to estimate the scal-
ing laws of crime. Instead of analyzing the linear form of 
Eq.  (3), we use the approach developed by Leitão et  al. 
(2016) to estimate the parameters of a distribution Y|N 
that has the following expectation:

that is, N scales the expected value of an urban indica-
tor  (Bettencourt et  al., 2013; Gomez-Lievano et  al., 
2012; Leitão et  al., 2016). Note that this method does 
not assume that the fluctuations around ln y and ln x are 
normally distributed  (Leitão et  al., 2016). Instead, we 
compare models for P(Y|N) that satisfy the following 
conditional variance:

where typically δ ∈ [1, 2] , since urban systems have been 
previously shown to exhibit non-trivial fluctuations 
around the mean—the so-called Taylor’s law  (Hanley 
et  al., 2014). To estimate the scaling laws, we maximize 
the log-likelihood

since we assume yi as an independent realization from 
P(Y|N) . In this work, we use an implementation devel-
oped by Leitão et al. (2016) that maximizes the log-like-
lihood with the “L-BFGS-B” algorithm. We model P(Y|N) 
using Gaussian and log-normal distributions in order to 
analyze whether accounting for the size-dependent vari-
ance influences the estimation. In the case of the Gauss-
ian, the conditions from Eq.  (5) and Eq.  (6) are satisfied 
with

(5)E[Y|N] = �Nβ ,

(6)V[Y|N] = γE[Y|N]δ ,

L = ln P(y1, . . . , yK|n1, . . . , nK) =

K
∑

i=1

ln P(yi|ni),
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whereas in the case of the log-normal distribution,

In the log-normal case, note that, if δ = 2 , then the fluctu-
ations are independent of N; thus this would be the same 
as using the minimum least-squares approach  (Leitão 
et  al., 2016). With this framework, we compare models 
that have fixed δ against models wherein δ is also included 
in the optimization process. In the case of the Gauss-
ian, we have fixed δ = 1 and free δ ∈ [1, 2] , whereas in 
the case of the log-normal, we have fixed δ = 2 and free 
δ ∈ [1, 3] . In this framework, p-values represent a statis-
tic testing two crucial aspects of the modelling: sample 
independence and model compatibility with data. The 
statistic consists of the D’Agostino K 2 test together with 
Spearman’s rank correlation of residuals, which evalu-
ates compatibility and independence, respectively (Leitão 
et al., 2016)

Finally, we compare each of the four models individu-
ally against the linear alternative (with fixed β = 1 ), to 
test the nonlinearity plausibility. With the fits of all types 
of crime and countries, we measure the Bayesian infor-
mation criterion ( BIC ), defined as

where k is the number of free parameters in the model 
and lower BIC values indicate better data description. 
The BIC value of each fit enables us to compare the mod-
els’ ability to explain data.

Appendices
Appendix 1: Results from the probabilistic scaling analysis
To test the plausibility of a nonlinear scaling, we com-
pare each model against the linear alternative (i.e., 
β = 1 ) using the difference �BIC between the fits 
for each data set. We follow Leitão et  al. (2016) and 
define three outcomes from this comparison. First, if 
�BIC < 0 , we say that the model is linear ( → ), since 
we can consider that the linear model explains the 
data better. Second, if 0 < �BIC < 6 , we consider 
the analysis of β  = 1 inconclusive because we do not 
have enough evidence for the nonlinearity. Finally, if 
�BIC > 6 , we have evidence in favor of the nonlinear 
scaling, which can be superlinear ( ր ) or sublinear 

µN(x) = αxβ and σ 2
N
(x) = γ (αxβ)δ ,

µLN(x) = ln α + β ln x −
1

2
σ 2

LN
(x) and

σ 2

LN
(x) = ln

[

1+ γ (αxβ)δ−2

]

.

BIC = −2 lnL+ k ln n,

( ց ). We also use �BIC to determine the model P(Y|N) 
that describes the data better. In Tables 2 and Table 3, 
we summarize the results in that a dark gray cell value 
indicates the best model based on �BIC , a light gray 
value indicates the best model given a P(Y|N) model, 
and ∗ indicates that the model is plausible (p-value 
> 0.05).

Appendix 2: Data sources
See Table 4.
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Table 4  Data sources for each country

Country URL

Belgium https://​bit.​ly/​3v5I8​am

Canada https://​bit.​ly/​3f42J​q7

Colombia https://​bit.​ly/​3u7lF​Zb

Denmark https://​bit.​ly/​3bETR​EY

France https://​bit.​ly/​3u872​7Q

Italy https://​bit.​ly/​2S9iA​L0

Mexico https://​bit.​ly/​3v5JF​gC 
https://​bit.​ly/​3lkch​3w

Portugal https://​bit.​ly/​3hHbM​z0

South Africa https://​bit.​ly/​3u7m6​CN

Spain https://​bit.​ly/​3wqOW​jb

United Kingdom https://​bit.​ly/​3ytMO​J0

United States https://​bit.​ly/​3fx2i​TZ

https://github.com/macoj/scaling_laws_of_crime/
https://github.com/macoj/scaling_laws_of_crime/
https://bit.ly/3v5I8am
https://bit.ly/3f42Jq7
https://bit.ly/3u7lFZb
https://bit.ly/3bETREY
https://bit.ly/3u8727Q
https://bit.ly/2S9iAL0
https://bit.ly/3v5JFgC
https://bit.ly/3lkch3w
https://bit.ly/3hHbMz0
https://bit.ly/3u7m6CN
https://bit.ly/3wqOWjb
https://bit.ly/3ytMOJ0
https://bit.ly/3fx2iTZ
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