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Abstract 

Background:  Crime, traffic accidents, terrorist attacks, and other space-time random events are unevenly distributed 
in space and time. In the case of crime, hotspot and other proactive policing programs aim to focus limited resources 
at the highest risk crime and social harm hotspots in a city. A crucial step in the implementation of these strategies is 
the construction of scoring models used to rank spatial hotspots. While these methods are evaluated by area normal-
ized Recall@k (called the predictive accuracy index), models are typically trained via maximum likelihood or rules of 
thumb that may not prioritize model accuracy in the top k hotspots. Furthermore, current algorithms are defined 
on fixed grids that fail to capture risk patterns occurring in neighborhoods and on road networks with complex 
geometries.

Results:  We introduce CrimeRank, a learning to rank boosting algorithm for determining a crime hotspot map that 
directly optimizes the percentage of crime captured by the top ranked hotspots. The method employs a floating grid 
combined with a greedy hotspot selection algorithm for accurately capturing spatial risk in complex geometries. 
We illustrate the performance using crime and traffic incident data provided by the Indianapolis Metropolitan Police 
Department, IED attacks in Iraq, and data from the 2017 NIJ Real-time crime forecasting challenge.

Conclusion:  Our learning to rank strategy was the top performing solution (PAI metric) in the 2017 challenge. We 
show that CrimeRank achieves even greater gains when the competition rules are relaxed by removing the constraint 
that grid cells be a regular tessellation.
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Introduction
Related work
Real-time spatiotemporal crime forecasting has become 
a focal point of public and private sector development, 
with a desired end-state of crime reduction coupled with 
police efficiency (Perry 2013). Two large bodies of schol-
arly inquiry have served as the catalyst for this interest 
in improved crime forecasting. First, large proportions 
of crime events are concentrated within small propor-
tions of micro-places in urban environments (Weisburd 
2015). Many types of events related to human activity 

cluster in space and time, forming event “hotspots.” Bur-
glary offenders are known to replicate success at nearby, 
or identical, locations to previous crimes (Short et  al. 
2009) and space-time clusters are observed in patterns 
of shootings (Ratcliffe and Rengert 2008) due to retali-
ation and escalation. Event hotspots also occur in more 
extreme security settings, for example Improvised Explo-
sive Device (IED) attacks tend to cluster in time (Lewis 
and Mohler 2011) due to self-excitation and exogenous 
effects. In Fig.  1, we plot IED attacks in Baghdad from 
2004 to 2009. These events cluster along road networks 
and at major intersections within the spatial geography of 
the city.

Second, experimental studies indicate that elevated 
policing in a small set of high-risk crime locations, known 
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as hotspots policing, can lead to statistically significant 
crime rate reductions (Braga et  al. 2019). The standard 
approach for determining hotspots consists of dividing 
a city into geographic sub-regions, often grid cells, and 
scoring hotspots based upon historical crime counts over 
a specified time window (Chainey et al. 2008).

Despite these two empirical facts, there is much less 
consensus regarding the most appropriate, and most 
efficient, methods to estimate crime concentration and 
evaluate crime prediction methods. This is especially 
true when considering the array of event types for which 
police have responsibility and the variability that exists 
across event frequency and geographic units of analy-
sis (Mohler et al. 2019). The discussion below of related 
works summarizes common approaches for crime pre-
diction. While all existing metrics of geospatial crime 
concentration suffer drawbacks related to their stability 
over different space-time units, populations, or crime 
rates (Curiel 2019), forecast evaluation using concentra-
tion metrics is still a valid approach to assess the potential 
impact police interventions can have. Crime forecasting 
methods to date have taken several forms. Most common 
in the criminological literature are theory-driven models 
that account for the causes and correlates of crime, such 
as risk-terrain modeling (Caplan et  al. 2011; Kennedy 
et  al. 2011). These techniques rely upon environmental 
and structural theories of crime causation to quantify 
spatiotemporal crime risk. More data-driven approaches 
to crime prediction are prevalent across the computer 
science and statistics literatures. Smoothing techniques, 
most commonly kernel density estimation (KDE) (Gorr 

and Lee 2015; Porter and Reich 2012), use historical 
events, rather than spatial covariates, to estimate risk. 
Related to KDE are log-Gaussian Cox Processes (LGCP) 
that model the space-time process generating crime and 
allow for seasonal and exogenous trends in the data. 
LGCPs can also detect the spatial diffusion of events, 
such as crime (Flaxman et al. 2018; Shirota and Gelfand 
2017), violent crime (Taddy 2010), or the spread of infec-
tious disease (Diggle et al. 2013). Self-exciting point pro-
cesses are also used for ranking crime hotspots (Mohler 
et  al. 2011) and have been shown to lead to crime rate 
reductions in field trials over traditional hotspot map-
ping (Mohler et  al. 2015). Self-exciting point processes 
model repeat and near-repeat occurrences across space 
and time (Johnson et  al. 2007; Piza and Carter 2018) 
and hotspot policing based on these models attempts 
to prevent this near-repeat aspect of offending. In more 
extreme security settings space-time point process mod-
els for event prediction have been applied to conflict 
(Zammit-Mangion et al. 2012) and terrorism (Gao et al. 
2013) datasets and LGCPs have been combined with self-
exciting point processes to predict crime and terrorism 
(Mohler 2013). Other approaches for ranking crime hot-
spots include generalized linear models (Kennedy et  al. 
2011; Wang and Brown 2012; Wang et al. 2016), general-
ized additive models (Wang and Brown 2012), and ran-
dom forests have been applied to the problem of ranking 
offenders (Berk et al. 2009). In the past several years deep 
learning based approaches have also shown promise for 
space-time prediction of crime (Stec and Klabjan 2018; 
Wang et al. 2017).

Learning to rank for spatio‑temporal event data
Since the goal of hotspot policing is crime rate reduc-
tion, the standard metric for assessing a given scoring 
procedure is the percent of crime captured inside the top 
ranked hotspots in the absence of proactive police inter-
vention. The predictive accuracy index (PAI) (Chainey 
et al. 2008; Mohler et al. 2015); National Insititue of Jus-
tice 2017)

measures the percent of crime predicted in the top k hot-
spots normalized so that spatially random predictions 
have a PAI value of 1. In practice, the value of k is chosen 
to correspond to policing resources and realistic values 
may correspond to an area on the order of 1% of a city 
(Mohler et al. 2015).

Similar loss functions, such as NDCG@k, Prec@k and 
Recall@k, are used in information retrieval (Liu 2009) to 
measure the effectiveness of scoring algorithms aimed at 

(1)

PAI =

crime in k hotspots

total crime
·

total area

area of k hotspots
,

Fig. 1  IED attack hotspots in Baghdad from 2004 to 2009
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producing a high percentage of relevant documents in the 
top k documents returned from a query. The mathemati-
cal formulation of the two problems is similar, where the 
analog of a query is the time unit (window) for which 
crime hotspot predictions are made, the analog of a doc-
ument is a single spatial unit (grid cell, neighborhood, 
block, street corner, etc.) in the city, and the analog of rel-
evance is a binary or integer variable indicating whether 
or not a crime occurred inside the spatial unit and time 
window (or how many crimes occurred). We therefore use 
the notation PAI@k to denote the PAI value when the top 
k hotspots are flagged for police intervention. Learning 
to rank algorithms attempt to directly optimize the loss 
function of interest and have been shown to out-perform 
regression and likelihood based algorithms that optimize 
a smooth surrogate loss function (Liu 2009; Burges 2010). 
We note that there has been some work on spatial learn-
ing to rank in the context of inferring a users location 
from noisy GPS data (Shaw et  al. 2013), however to our 
knowledge no work to date has focused on the learning 
to rank problem in the context of crime event prediction.

In this paper we develop a learning to rank algorithm, 
CrimeRank, for space-time event hotspot ranking. A 
general overview of the algorithm is as follows. Features 
are defined for each potential hotspot in a city at a par-
ticular time unit and then used to calculate a risk score 
that ranks hotspots over the next (future) time unit. 
Similar to LambdaMart (Burges 2010), we introduce a 
pseudo-derivative for PAI@k and then perform gradient 
ascent boosting to maximize PAI. At each iteration we 
use decision trees as the weak learner to model the deriv-
ative of PAI as a function of the features in each hotspot. 
At prediction time we compute the score for a collection 
of potentially over-lapping hotspots and then perform a 
greedy sort to select the top k non-overlapping hotspots. 
Stochastic gradient boosting has many of the advantages 
of random forests; the use of decision trees allows the 
model to capture nonlinear interactions and bootstrap-
ping of the training data provides variance reduction. 
Boosting, however, has the added benefit that the loss 
function of interest is directly optimized.

Outline
We apply the CrimeRank method to several space-time 
event data sets to illustrate the improvement in PAI over 
existing methodologies. The outline of the paper is as 
follows: in “Methods” section we provide details on the 
CrimeRank algorithm and in “Results and discussion” 
section we include results for the CrimeRank algorithm 
on several data sets including crime and traffic incidents 
in Indianapolis, IED attacks in Baghdad, and data from 
Portland, Oregon used in the 2017 NIJ Real-time crime 
forecasting challenge. Our learning to rank strategy 

under the team name PASDA was the top performing 
solution (PAI metric) in the 2017 challenge. We show 
that CrimeRank achieves even greater gains when the 
competition rules are relaxed and spatial discretizations 
are not required to be a regular tessellation. We discuss 
future directions for research in this area in “Conclusion” 
section.

Methods
In this section we provide the details of our algorithm. 
In “Feature selection” section we discuss feature selec-
tion within hotspots. In “Optimization of PAI@k” sec-
tion we introduce our spatial learning to rank algorithm 
that models a pseudo-derivative of PAI and then per-
forms stochastic gradient boosting. In “Offgrid space-
time ranking” section we provide details on our off-grid 
approach to selecting event hotspot polygons.

Feature selection
Given a data set of space time event locations up to the 
present day, our goal is to flag a set of k spatial areas that 
have the highest risk for event occurrence in the near 
future, e.g. the next day, week, month, etc. In this paper 
we will consider rectangular grid cells for dividing a city 
into sub-areas, though our methodology applies to more 
general polygons and other sub-divisions.

In the case of crime, algorithms typically fall into one 
of two broad categories for ranking spatial areas, namely 
nonparametric methods utilizing only event data (kernel 
hotspot maps and point processes are common methods) 
or multivariate models that explicitly incorporate addi-
tional variables such as demographics (Wang and Brown 
2012), income levels (Liu and Brown 2003), distance from 
crime attractors (Wang and Brown 2012; Liu and Brown 
2003; Kennedy et  al. 2011), leading-indicator crimes 
(Cohen et al. 2007; Gorr 2009), and auxiliary social sens-
ing data (Twitter, mobile phone locations, Google street 
view, etc.) (Wang et  al. 2012, 2016; Bogomolov et  al. 
2014; Khosla et al. 2014).

Because the focus of this paper is on the optimization 
method used to train a hotspot ranking model, rather than 
feature selection, we restrict our attention to univariate 
modeling where features are derived from the event data 
alone. Our methodology would easily extend to other types 
of contextual features including stationary features such as 
census data (Kennedy et al. 2011) or more real-time data 
such as population density from mobile phones (Bogo-
molov et  al. 2014). The latter is typically not available in 
most U.S. cities, therefore the majority of crime models 
use publicly available spatial covariates or are based solely 
on the events (e.g. univariate models). Because station-
ary covariates are primarily used for variance reduction 
in space-time crime models, they are less important in 
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learning to rank the top crime hotspots that are character-
ized by high volumes of events (hence variance is low). For 
this reason the top performing solutions in a recent NIJ 
forecasting competition were based on univariate modeling 
(Flaxman et al. 2018; Mohler and Porter 2017).

As an example using a weekly forecast window, a 
52-week time series consisting of the event counts in each 
grid cell for the 52 weeks leading up to the present could 
be used as the features. Thus, the training data set would 
be created over a historical time period by computing the 
52 dimensional feature set for each cell and each week, 
where the label is the number of events in the following 
week. The learning task is then to rank the grid cells such 
that the top k cells will have the largest number of events 
in the subsequent week. Each row in the training data is a 
grid cell-week pair. Because the PAI is based on all the grid 
cell rankings for a given time period, all rows correspond-
ing to the same week must be considered simultaneously to 
compute the PAI for that week. The analog of a week in the 
information retrieval setting is a query. Note that regres-
sion based methods will treat all rows as independent dur-
ing training.

Optimization of PAI@k
Next we describe our optimization method for maximizing 
PAI@k, the area normalized fraction of crime in the top k 
event hotspots. Let i ∈ {1, 2, . . . ,N } index the N grid cells 
and t ∈ {1, 2, . . . ,T } index the T time periods in which pre-
dictions are being made. Let zit denote the feature vector, 
sit the score, and yit the label for cell i at time t. Note that 
yit is the number of events in the future time period t + 1 . 
This gives a total of N × T  observations.

The set of scores induce a ranking on the grid cells for 
each time period. Let rit be the rank of score sit , with a rank 
of one being assigned the cell with the largest score at time 
t. Then the top k cells, at time t, are Vkt = {i : rit ≤ k} . The 
resulting PAI is calculated separately for each time period.

We first note that PAI is non-smooth as a function of 
sit . In particular, consider fixing the scores except for two 
grid cells in the same week t indexed by i and j and assume 
yit > yjt . Then PAI will be piecewise constant as a function 
of sit − sjt and will have a jump discontinuity at sit = sjt . 
Therefore PAI has no derivative for performing gradient 
ascent. However, we follow the approach of Burges (2010) 
and introduce a pseudo-derivative �it,

that models the gradient of PAI at cell-week i-t. Here the 
term �kt(i, j) denotes the change in PAI if the ranking of 
cells i and j are swapped at time t (leaving all other rank-
ings fixed) and can be written,

(2)�it =
∑

j:yit>yjt

|�kt(i, j)|

1+ esit−sjt
−

∑

j:yjt>yit

|�kt(i, j)|

1+ esjt−sit
,

where c = (total area)/(area of k grid cells) is the PAI nor-
malizing constant.

The first summation in (2) is over all pairs where grid 
cell i should be ranked higher than grid cell j and thus 
is positive in order to increase the score sit and thus 
increase the PAI. The logistic term evaluated at sit − sjt 
is introduced to add regularization and in Burges 
(2010) the authors find that it has the effect of adding a 
margin. The second term is over pairs where i should be 
ranked lower than j and thus has the effect of lowering 
the score sit (and therefore increasing PAI).

We note that the computational cost of �it over all i 
is quadratic, however in practice the performance is 
approximately linear. First, only grid cells in the same 
time period need to be considered when computing 
{�it}

N
i=1 . Second, for many event data sets and reason-

ably small grid cells only a small percentage of cells 
will contain non-zero counts. Because (2) only involves 
pairs in which yi  = yj the cost is O(M0M1) where M1 is 
the number of non-zero labels for a given t and M0 is 
the number of zero label cells. 

Given the model for the derivative � of PAI@k, we then 
use decision tree based gradient boosting to optimize the 
loss function. We call our method CrimeRank and pro-
vide pseudo-code in Algorithm 1. Starting with an initial 
guess for scores sit , we then perform boosting iterations 
where (i) the pseudo-derivative �it is computed using 
the current score guess, (ii) a regression tree is fit to the 
derivative �it as a function of the features zit , and (iii) the 
score sit is updated by a gradient ascent step. In prac-
tice we find that using stochastic gradient ascent (Fried-
man 2002) performs better where a random subset of �i 

(3)

�kt(i, j) =







c (yit − yjt)/Nt ri ≤ k , rj > k
0 ri ≤ k , rj ≤ k; ri > k , rj > k
c (yjt − yit)/Nt ri > k , rj ≤ k
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are used to estimate the regression tree Ŵ at each itera-
tion. In Fig. 2 we plot an example of boosting iterations 
for robbery incidents in Indianapolis. Empirically we find 
that the pseudo-derivative is effective in maximizing the 
PAI (proportional to the fraction of crime predicted) on 
training data. We provide more results in “Results and 
discussion” section.

Offgrid space‑time ranking
The second component of CrimeRank is an “offgrid” 
approach that we introduce for dealing with complex 
geometries that are associated with event patterns along 
road networks and other urban structures. In Fig.  3 we 
provide an illustration of the problem that arises with 
fixed grids used in spatial hotspot ranking. Here four 

events are plotted over a regular grid (thick black lines) 
and we let k = 2 . Then four grid cells each have one 
event, the others have zero, so that the maximum possi-
ble PAI@2 is four (two crimes out of four predicted area 
normalized by two cells out of sixteen). However, cells 
chosen without respect to a regular grid can achieve a 
PAI@2 of eight even with the same size and shape.

We introduce a simple heuristic for moving to an off-
grid approach while taking advantage of the CrimeRank 
algorithm introduced in “Optimization of PAI@k” sec-
tion. In particular, we train CrimeRank on a fixed regular 
grid obtaining the fitted CrimeRank model (i.e., the col-
lection of regression trees). The CrimeRank model is then 
used to estimate the risk score, during the evaluation 
period, for a larger collection of grid cells and a greedy 
sort algorithm is used to find the set of k non-overlapping 
cells with the largest scores.

The CrimeRank model is fit one time, on a given grid 
from the training data, and then used to estimate the 
score, for all times in the evaluation period, at addi-
tional grid cells. The additional collection of grid cells 
can be generated, e.g., by translating and rotating the 
original grid used for model fitting. Because the model 
features must be calculated for the new grid cells, it is 
important to use the same size cells. In “Indianapo-
lis crime hotspot ranking and Improvised Explosive 
Device (IED) attacks in Baghdad, Iraq” sections we use 
g × g  over-lapping grids identical to the original fixed 
grid except that they are offset by a multiple of �x/g 
from the fixed grid where �x is the length of the side of 
a grid cell. Figure 3 illustrates the setting of g = 5 ; the 
thick lines shows the original 16 grid used for training 
the model and the collection of 200 additional grid cells 
are the square regions obtained by centering on each 
small square. In practice we find that g = 10 works well 
in balancing accuracy and storage/computational costs. 
In “2017 NIJ Crime Forecasting challenge” section, we 
also incorporated rotated grid cells to expand the num-
ber of potential hotspots.

Once all of the grid cells are scored, we utilize a 
greedy sort algorithm (Algorithm 2) to identify the top 
k non-overlapping hotspots. First we select the cell with 
the highest score over all grids. Second we select the 
cell with the next highest score such that it does not 
overlap with the first cell. We continue on in this fash-
ion, where the jth cell is selected with the highest score 
such that it does not overlap with cells 1, . . . , j − 1.

We note that there is a connection between the off-
grid methodology we have proposed here and spatial 
scan statistics used to detect anomalies (for example 
disease outbreaks) in spatial-temporal event data (Kull-
dorff 2001; Assunção and Correa 2009; Neill 2009). The 
goal of the scan statistic approaches is to detect emerging 
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Fig. 2  CrimeRank boosting iterations using stochastic gradient 
ascent for robbery hotspot ranking in Indianapolis over 2013–2015 
(split for training and testing)

Fig. 3  4 × 4 grid scenario. Maximum PAI@2 on the fixed grid is 4 (1/2 
of crime captured divided by 2/16 of area flagged). Maximum PAI@2 
on a floating grid is 8
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spatio-temporal clusters that have anomalous event rates 
by scanning over many possible spatial regions and time 
periods. For example, in Kulldorff (2001) circles Z of 
varying radius and center location are defined and then 
a likelihood ratio test using the statistic L(Z)/L0 (where L 
is a Poisson likelihood) is used to flag clusters. Our goal is 
different, namely identifying the regions with the largest 
expected event rate in the future rather than identifying 
the regions that have the most unusual event rates in the 
recent past. For this purpose we are using features within 
each region to predict future risk and then directly opti-
mizing a ranking loss function. We note that the scan sta-
tistic methods developed to search for irregularly shaped 
clusters (Duczmal et al. 2008, 2006; Speakman et al. 2016; 
Neill 2012; Tango and Takahashi 2005) could be used to 
generalize the rectangular regions we considered here 
and speed the search process. We will return to this idea 
in the discussion in “Conclusion” section.

Results and discussion
Baseline models
We compare CrimeRank to several existing methods 
including random forest (Mohler and Porter 2017; Alves 
et  al. 2018), generalized linear model (GLM) (Kennedy 
et al. 2011; Wang et al. 2012), gradient boosting machine 
(GBM) applied to the ranking metric NDCG (Ridgeway 
2007), a Hawkes point process (Mohler et al. 2015, 2011), 
kernel density estimation (Chainey et  al. 2008), and a 
CNN-LSTM (Stec and Klabjan 2018; Groß et  al. 2017). 
CrimeRank, random forest, GLM, and GBM use the same 
features (weekly event counts in the grid over the last 52 
weeks). The self-exciting Hawkes model and kernel den-
sity estimation use the raw events as input. For the CNN-
LSTM we use a 52 week time series of event counts in the 
5 × 5 grid cell patch surrounding and including the target 
cell as input. We use 2 convolution layers with 3 × 3 fil-
ters followed by a LSTM and dense layer.

Indianapolis crime hotspot ranking
In our first example we test the CrimeRank methodology 
using crime and vehicle crash incident data from the city 
of Indianapolis, Indiana. Crime incidents for years 2012–
2015, specifically robbery and residential burglary, were 

provided electronically by the Indianapolis Metropolitan 
Police Department (IMPD). Vehicle crash data for years 
2012–2013 were provided electronically from the Indiana 
State Police using the Automated Reporting Information 
Exchange System (ARIES). One of two characteristics 
must occur for collisions to be included in ARIES; if the 
incident resulted in personal injury or death, or property 
damage to an apparent extent greater than one thousand 
dollars. Both crime and crash data included date and time 
stamp as well as state-plane coordinates from a compos-
ite address locator that were converted to WGS84 coor-
dinates. Robbery (Haberman and Ratcliffe 2012; Youstin 
et  al. 2011; Ratcliffe and Rengert 2008), residential bur-
glary (Nobles et  al. 2016; Piza and Jeremy 2017; Ber-
nasco 2008), and vehicle crashes (Carter and Piza 2018; 
Drawve et  al. 2017; Kuo et  al. 2013) have demonstrated 
spatiotemporal patterns in criminological research that 
are likely to inform strategic police operations to mitigate 
risk and deter offending. Thus, these three incident types 
are the focus of the present demonstration.

In the data set there are 35,225 burglary incidents, 
13,135 robbery incidents, and 42,328 traffic accidents 
and we model and evaluate each event type separately. 
We consider weekly time periods and, following (Mohler 
et al. 2015), use grid cells of size 150m× 150m . We use 
the time period 1/1/2013 to 6/31/2014 for training and 
evaluate the methods on each week during the time 
period 7/1/2014 to 12/31/2015 (for traffic accidents we 
use 1/1/2013 to 6/31/2013 for training and 7/1/2013 to 
12/31/2013 for testing). For CrimeRank we use a max leaf 
size of 500 for the regression trees and subsample 1/4 of 
the training data when constructing each tree. We use 
k = 200 grid cells for evaluation, comprising approximate 
0.4% of the city, on the same order of magnitude as real-
istic hotspot policing deployments (Mohler et al. 2015).

In Table  1 we list the PAI results for CrimeRank and 
the baseline methods applied to crime and traffic crash 
incident data in Indianapolis. For all three incident types 
CrimeRank outperforms the other methodologies. Cri-
meRank captures 36% more events for burglary and 
28% more events for robbery than the next best method. 
The improvement for traffic crashes is lower, but Crim-
eRank still has a PAI of over 60 compared to the other 
methods with a maximum PAI of 55. An explanation for 
these results is that in the case of robbery, crime is highly 
clustered on street networks and CrimeRank is able to 
adapt to the geometry of the network (see Fig. 4). Traf-
fic crashes are clustered at intersections and burglary is 
more spatially disaggregated and thus the PAI values are 
lower compared to those for robbery.
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Improvised Explosive Device (IED) attacks in Baghdad, Iraq
In our second example we test the CrimeRank meth-
odology using IED incident data from central Baghdad, 
including date, latitude and longitude of attacks, during 
the Iraq War from 2004 to 2009. In the data set there are 
16,495 IED attacks. The attack data are based on Sig-
nificant Activity (SIGACT) reports by Coalition forces 
in Iraq. Unclassified data from the MNU-I SIGACTS 
III database were provided to the Empirical Studies of 
Conflict (ESOC) project (Berman et  al. 2011). The data 
set includes a wide range of activity but our analysis here 
is limited to IEDs. The SIGACT data have two weak-
nesses that are relevant here. First, they capture violence 
against civilians and between non-state actors only when 
U.S. forces are present and so likely undercount sectar-
ian violence (Leonard 2009; Fischer 2008). Given that our 
emphasis is on IEDs, missing sectarian violence should 
not bias our results. Second, these data almost certainly 
suffer from measurement error in that units vary in their 
thresholds for reporting specific events as significant 
activity. Fortunately, there is no evidence that such error 
is nonrandom with regard to the IED locations. Missing 
data is inherent in all of the applications we consider in 
this paper; crimes and traffic crashes also may go unre-
ported and adjusting forecasting models to compensate is 
beyond the scope of the paper.

We again make weekly predictions and use grid cells 
of size 150m× 150m . For CrimeRank we use a max leaf 
size of 500 for the regression trees and subsample 1/4 of 
the training data when constructing each tree. We com-
pare CrimeRank to the same baseline methods as in 
“Indianapolis crime hotspot ranking” section using iden-
tical 52 week time series features. We use the time period 
1/1/2006 to 6/31/2007 for training and we evaluate the 
methods over the time period 7/1/2007 to 12/31/2008. 
We again use k = 200 grid cells for evaluation, compris-
ing approximately 0.4% of the central area of Baghdad 
(chosen for the study to be a similar size to Indianapolis).

In Table 1 we list the PAI results for CrimeRank and the 
baseline methods applied to the IED incident data. Simi-
lar to robbery, CrimeRank outperforms the other meth-
odologies by over 42%. In Fig. 4 we provide an example 

of the CrimeRank hotspot distribution on a given week 
in the testing period for a section of central Baghdad. We 
note that grid cells are able to align to intersections and 
diagonal roads in a manner such that the corners of the 
grid cell are aligned with the street, thus maximizing PAI 
(for example the left most cluster of four cells illustrate 
this effect).

In Fig. 5 we plot the average number of IED incidents 
captured in the top k grid cells (as a function of k). One 
interesting effect to note is that the highest grid cells of 
CrimeRank contain less incidents compared to methods 
that use maximum likelihood estimation. This is likely 
due to the fact that PAI is not changed by a re-ordering 
of the top grid cells ranking, but instead is sensitive to 
cells either being inside or outside of the top k. After the 
top 10 cells, CrimeRank cells contain significantly more 
incidents than the other methods, explaining the overall 
improvement in PAI.

Table 1  PAI results of CrimeRank vs. baseline models for ranking hotspots of burglary, robbery, traffic crashes, and IED 
attacks

CrimeRank Rand. forest GLM Hawkes CNN-LSTM KDE GBM-NDCG

Indpls. burglary 41.56 28.61 25.52 30.41 29.14 3.47 16.31

Indpls. robbery 88.71 53.61 69.68 68.32 32.68 10.46 46.48

Traffic crash 60.56 54.37 54.63 55.13 54.84 43.10 40.38

Baghdad IED 95.13 57.11 66.77 65.05 64.74 62.56 47.84

Fig. 4  CrimeRank determined IED hotspots for a week in 2008 in an 
area of central Baghdad. Hotspots align to road network and certain 
intersections to maximize PAI
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2017 NIJ Crime Forecasting challenge
The 2017 NIJ Crime Forecasting challenge tasked par-
ticipants with forecasting the spatial locations contain-
ing the highest volume of crime-related calls for service 
in Portland, OR. Specifically, the contestants were given 
event data comprising projected geographic coordi-
nates, date, and category (burglary, street crime, theft 
of auto, other) for the period of March 1, 2012 through 
February 28, 2017. Separate forecasts were made for 4 
event types: burglary (Burg), street crime (Street), theft 
of auto (MVT), and all calls for service (ACFS) and 5 
forecast horizons: 1 week (March 1–7), 2 weeks (March 
1–14), 1 month (March 1–31), 2 months (March 1–
April 30), and 3 months (March 1–May 31). The sub-
mitted forecast was specified to be a set of regular grid 
cells that covered all of the study region with some 
of the cells flagged as a “hotspot”. The grid cells were 
required to be a regular tessellation of the Portland, OR 
administrative region in which all grid cells must have 
the same size, shape, and orientation. Rectangles, tri-
angles, and hexagons were the permitted grid shapes. 
Furthermore, the grid cells were required to have an 
area between 62, 500 ft2 and 360, 000 ft2 with the small-
est dimension being at least 125 ft. The cells flagged as 
hotspots were required to have aggregate area between 
0.25mi2 and 0.75mi2 , but there was no requirement that 
the hotspot cells be connected.

For the competition, we developed a Rotational Grid 
PAI maximization strategy (RGPM) (Mohler and Porter 

2017) under the team name PASDA that was designed 
for jointly learning an optimal grid and scoring func-
tion for the purpose of maximizing PAI in crime fore-
casts under the rules of the NIJ competition. We used 
a regular grid of equally sized rectangles with the mini-
mum allowable area ( 62, 500 ft2 ). The grid was para-
metrized with three parameters: cell height h, a grid 
translation parameter γ and a rotation angle θ . The 
overall procedure is captured in Algorithm 3, where the 
model M mapping features to the target variable was 
either a point process based GLM or a random forest 
(depending on crime category). A simplex method was 
used to maximize PAI with respect to the rotational 
grid parameters.

In Table  2 we include overall competition results 
illustrating the accuracy of our RGPM approach. In 
the table we list the number of overall (across the three 
divisions) 1st, 2nd and 3rd place PAI finishes for teams 
having placed at least once. We note that the RGPM 
tied for the most 1st and 2nd place finishes and had the 
most 3rd place finishes across the crime type categories 
and forecasting windows. We also include in Table  2 
the total number of finishes (3rd place and higher) 
within our division (large business) and overall, in both 
cases the RGPM method had the most finishes.

Next we compare CrimeRank and the baseline mod-
els from the previous section to the top performing 
methods of the NIJ competition. The methods again 
use 52 week count features (or the raw events for the 
Hawkes process and KDE). For training we use the time 
period 3/1/2013 to 5/31/2016 and then we evaluate the 
CrimeRank method using the competition validation 
data set.
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Fig. 5  Average number of incidents captured in the top k grid cells

Table 2  Aggregate number of  1st, 2nd and  3rd place PAI 
finishes across divisions along with total number of overall 
3rd and higher finishes (A) and number of 3rd and higher 
finishes within division (B)

Name 1st 2nd 3rd A B

PASDA 4 5 4 13 20

TAMERZONE 4 5 2 11 15

GRIER 1 4 0 5 8

JeremyHeffner 2 0 3 5 9

ANDY_NIJ 1 2 1 4 9

KUBQR1 0 1 3 4 7

pennaiken 2 0 2 4 10

Codilime 3 0 0 3 7
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For comparison we also add a rotational version of Cri-
meRank. We consider (250 ft × 250 ft) squares as well as 
(125 ft × 500 ft) rectangles with four orientations (0, π/4 , 
π/2 and 3π/4 ). To reduce the memory requirements of 
using the offgrid search, we generate the additional grid 
cells by creating rectangles centered at a sub-sample of 
the event locations in the training period (10000 events).

We use a max leaf size of 100 for street crime and 50 
for all calls for service for the regression trees and sub-
sample 1/4 of the training data when constructing each 
tree. Examples of the Rotational CrimeRank hotspot cells 
are shown in Fig. 6. The code to reproduce our CrimeR-
ank results is available at Github (Crimerank 2018).

We restrict our attention to the categories street crime 
and all calls for service over the 3 month forecasting win-
dow. We use the 3 months forecasting window so that 
variance does not play a large role in method ranking (in 
the NIJ competition short-term windows such as 1 week 
had very few events). In Table 3 we list CrimeRank PAI 
values (NIJ validation data set) compared to the baseline 
models. In the case of street crime, CrimeRank and its 

rotational version achieve a PAI of 91 and 100 respec-
tively compared to the 1st place solution PASDA (PAI 87) 
and the 2nd place solution TAMERZONE (PAI 84). For 
all calls for service, CrimeRank achieves a PAI of 64 com-
pared to the 1st place solution CODILIME (PAI 60.5). We 
note in Fig. 6, where examples of Rotational CrimeRank 
hotspots are shown, that rectangles at diagonal angles are 
heavily favored in certain areas of Portland where major 
streets run diagonally. This effect was not possible within 
the rules of the NIJ competition, but meets the spirit of 
the rules in terms of cell shape, size, and non-overlap-
ping requirements. Given the high societal cost of crime 
(McCollister et al. 2010), we believe a PAI improvement 
of 4 to 13 (over competition winning methods) is a sig-
nificant result.

Conclusion
We developed a spatial-temporal learning to rank algo-
rithm, CrimeRank, for identifying high risk “hotspots” in 
human activity data. The method directly optimizes the 
PAI@k loss function from criminology using gradient 
boosting. Although the loss function is non-smooth, a 
pseudo derivative is used in the boosting algorithm that 
empirically maximizes PAI. CrimeRank also deals with 
the geometry of hotspots in urban environments using a 
novel greedy sorting algorithm at the time predictions are 
made. We show that CrimeRank improves the percentage 
of events captured in hotspots by up to 35% compared 
to commonly used methods for crime, traffic and IED 
event data. This 35% improvement could have important 
policy implications, as hotspot policing has been shown 
to yield greater crime rate reductions when the PAI of 
the hotspots is higher (Mohler et al. 2015). Beyond hot-
spot policing, CrimeRank may be used in conjunction 
with other proactive efforts such as community policing 
(Weisburd et al. 2020) and direct alerts for citizens (Groff 
and Taniguchi 2019).

In this work we restricted our attention to searching 
for rectangularly shaped hotspots. While we do develop 
the offgrid approach that considers shifting, rotating, 
and scaling the rectangles, hotspots with more general 
shapes may better capture location specific geometries 
and lead to higher PAI scores. Furthermore, it may be 
advantageous to consider network versions of CrimeR-
ank that more naturally align with event locations that 
are restricted to streets. Future research in these areas 
may lead to further improvements in accuracy. One 
other research question that needs to be addressed in the 
future is how off-grid, rotated and non-standard polygon 
representations of crime hotspots may impact end-user 
trust in event forecasts. There also are data structure 
advantages and disadvantages of the method relative to 
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Fig. 6  Example street crime hotspots selected via Rotational 
CrimeRank
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spatial rasters. We also only considered forecasts over 
1-week and 3-month intervals in this paper and in the 
future it would be useful to consider hourly forecasting 
that can capture daily and hourly trends in crime.

While hotspot policing has been shown to yield crime 
rate reductions, there is the possibility of unwanted 
side effects of hotspot policing such as traffic stops that 
unfairly target minority populations, stop and frisk, and 
other police activities that have negative societal conse-
quences. There has been some recent work on improving 
fairness of spatial crime forecasting algorithms (Wheeler 
2019; Mohler et  al. 2018) where a fairness penalty is 
added to the optimization algorithm. Future research 
may focus on incorporating fairness into learning to rank 
models of crime, similar to methods that incorporate 
fairness into learning to rank for information retrieval 
(Zehlike and Castillo 2018).

The methods introduced here will complement recent 
work on the incorporation of social sensing data into 
crime predictions (Wang et  al. 2012, 2016; Bogomolov 
et  al. 2014; Khosla et  al. 2014). For example, real-time 
human movement data collected via smart phones or 
fixed city sensors has been shown to improve crime hot-
spot prediction accuracy. Implementing real-time, offgrid 
learning to rank and spatial scan methods at scale pre-
sents several computational and algorithmic challenges. 
The current model takes several minutes to hours to train 
on a laptop for each dataset. While this is not an issue 
for commercial predictive analytics software that runs in 
dynamic cloud servers, the runtime may be too long for 
desktop solutions used by crime analysts. Making these 
methods faster will be another focus of future research.
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