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Abstract 

Ransomware incidents have increased dramatically in the past few years. The number of ransomware variants is also 
increasing, which means signature and heuristic-based detection techniques are becoming harder to achieve, due to 
the ever changing pattern of ransomware attack vectors. Therefore, in order to combat ransomware, we need a better 
understanding on how ransomware is being deployed, its characteristics, as well as how potential victims may react 
to ransomware incidents. This paper aims to address this challenge by carrying out an investigation on 18 families of 
ransomware, leading to a model for categorising ransomware behavioural characteristics, which can then be used to 
improve detection and handling of ransomware incidents. The categorisation was done in respect to the stages of 
ransomware deployment methods with a predictive model we developed called Randep. The stages are fingerprint, 
propagate, communicate, map, encrypt, lock, delete and threaten. Analysing the samples gathered for the predictive 
model provided an insight into the stages and timeline of ransomware execution. Furthermore, we carried out a study 
on how potential victims (individuals, as well as IT support staff at universities and SMEs) detect that ransomware was 
being deployed on their machine, what steps they took to investigate the incident, and how they responded to the 
attack. Both quantitative and qualitative data were collected through questionnaires and in-depth interviews. The 
results shed an interesting light into the most common attack methods, the most targeted operating systems and 
the infection symptoms, as well as recommended defence mechanisms. This information can be used in the future to 
create behavioural patterns for improved ransomware detection and response.
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Introduction
Ransomware is a form of malware that blackmails its 
victim. The name “ransomware” comes from the ran-
som note asking its victim to pay some money (ransom) 
in return for gaining back access to their data or device, 
or for the attacker not to divulge the victim’s embar-
rassing or compromising information. It usually spreads 
through malicious e-mail attachments, infected software 
apps, infected external storage devices or compromised 
websites. Unlike other types of malware (which typically 
try to remain undetected), ransomware exposes itself at 
some stage of its execution in order to deliver the ransom 

demand to its victim. This demand is usually presented 
with a note that appears on the screen before or after the 
encryption occurs, outlining the threat and accompanied 
by a detailed set of instructions for making the payment, 
typically through a cryptocurrency.

Ransomware has had a rapid year-on-year growth of 
new families since 2013, costing an estimated more than 
5 billion USD globally and growing over an expected rate 
of 350% in 2017 (Morgan 2017; Clay 2016). The major-
ity of ransomware strains target Windows operating 
systems (Mansfield-Devine 2016) and are of the crypto-
ransomware type (Savage et  al. 2015). Crypto-ransom-
ware attacks have a greater threat than any other type of 
ransomware, as they can lock out a user from valuable 
assets, affecting productivity and availability of services. 
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The attacks mainly affect small and medium sized enter-
prises (SMEs) (Savage et al. 2015) and critical infrastruc-
ture including educational institutions and healthcare 
trusts (Barker 2017; Dunn 2017; Heather 2017), which 
are more likely to fall victim or flounder under the pres-
sure and pay to release the encrypted contents. The num-
ber of attacks has grown partly because malware authors 
have adopted an easy-to-use modular design of the ran-
somware. Furthermore, Ransomware-as-a-Service (RaaS) 
products (Conner 2017; Cimpanu 2017) have become 
more readily available, which assist the attacker through 
simplistic distribution with phishing and exploitation kits 
and a trustworthy business model.

The attacks are often achieved through leveraging 
social engineering tactics to get a victim to download 
and activate the binary, which evades the anti-virus scan-
ner’s signature-based detection through oligomorphic or 
polymorphic decryptors, metamorphic code (Szor 2005) 
or the generation of a new variant. According to Syman-
tec’s reports (Savage et  al. 2015; O’Brien et  al. 2016), 
phishing attacks are the prime cause of ransomware 
being activated on a victim’s computer. A likely scenario 
of the vectors toward activation could be from an email 
with a payload or a link to a website that triggers a drive-
by-download. The downloaded binary could initiate the 
process of carrying out the ransom, or in cases of more 
sophisticated attacks, it will first fingerprint the victim’s 
environment prior to dropping the malicious binary or 
process (Lindorfer et al. 2011).

Researchers have analysed ransomware variants, but 
are yet to propose a predictive model of ransomware 
deployment methods. It is vital to have a deep under-
standing of the deployment methods of ransomware to 
effectively fight against them.

The main contribution of this paper is a predictive 
model of ransomware stages, which came out from a 
study of 18 ransomware families by looking into Win-
dows Application Programming Interface (API) func-
tion calls during each ransomware execution. Another 
contribution of this research focuses on querying and 
interviewing ransomware victims to find common factors 
between attacks, in order to be able to generate a more 
high-level understanding of ransomware deployment 
methods.

The rest of the paper is organised as follows. The "Ran-
somware overview" section provides a more in-depth 
look into ransomware, including its attack vectors, 
the way it may target user files, as well as an outline of 
related work, both in understanding ransomware and 
in combatting it. The  "Methodology" section outlines 
the two-pronged methodology used in our research, 
namely the development of a predictive model of ran-
somware deployment, and the user study to gain better 

understanding on ransomware deployment. The "Results, 
analysis and discussion" section presents the results of 
our research, in particular the predictive model of ran-
somware deployment involving the stages of ransomware 
deployment, leading to ideas for preventive action to 
deal with ransomware deployment threat effectively. The 
results from the user study are also summarised, analysed 
and discussed, shedding light into the ransomware vic-
tims’ perception and behaviour in the aftermath of a ran-
somware incident. All of these may contribute towards 
better techniques in combatting ransomware. "Conclu-
sion" section concludes our paper and presents some 
ideas for future work.

Ransomware overview
In 1996, Young and Yung introduced the idea of cryp-
tovirology (Young and Yung 1996), which shows that 
cryptography can be used for offensive purposes, such as 
extortion. Since then, this idea had evolved into ransom-
ware, and ransomware has become a growing cyber secu-
rity threat, with an increased number of infections and 
many variants being created daily. According to a Syman-
tec report, 98 new ransomware families were found in 
2016, more than tripling the figure for the previous year 
(Symantec: Internet Security Threat Report 2017).

The main types of ransomware are scare, lock, crypto, 
and wipe, where the latter was first seen with the 2017 
PetrWrap attack that encrypted the Master File Table 
(MFT) of victims, but did not unlock it after payment. 
Encrypting the MFT renders the content of a hard drive 
unusable, and is rarely used among ransomware fami-
lies. Other examples of crypto-ransomware targeting the 
MFT include Seftad (Kharraz et al. 2015), Petya (Mans-
field-Devine 2016), and Satana (Villanueva 2016). The 
latter two (as well as PetrWrap) start by corrupting the 
MFT and forcing the operating system (OS) to reboot. 
Like computer worms (Szor 2005; Yang et al. 2008), ran-
somware can self-propagate such as when TeslaCrypt 
infected a laptop integral to a gambling website and led 
to spreading itself to over 15 servers and 80 other con-
nected computers through the use of shared folders 
(Spring 2016). Perhaps the most infamous ransomware 
is the WannaCry cryptoworm, which hit the headline in 
May 2017, and affected more than 200,000 computers in 
150 countries, including the UK National Health Service 
(National Audit Office 2017).

Attack vectors for distributing ransomware
Various tactics are used by ransomware attackers to get 
their victims to activate the malware, grant it elevated 
privileges, and submit to the demands. Common infec-
tion vectors of ransomware include phishing, exploit 
kits, downloader and trojan botnets, social engineering 
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tactics, and traffic distribution systems (Sgandurra et al. 
2016). Despite phishing still prevailing as the preferred 
choice for deployment (Savage et al. 2015), in 2015–2016 
there was a noticeable increase in the use of exploit kits, 
such as Angler, which was used to spread CryptoWall and 
TeslaCrypt in 2015 (Abrams 2016a). Angler had a very 
high activity in the malware distribution world until the 
arrest of its developers in 2016 (Cisco 2017).

Due to the nature of the attacks, ransomware can be 
seen as having a business model (Hernandez-Castro 
et  al. 2017), where victims are the attackers’ custom-
ers who purchase decryptors or keys to regain access to 
assets. Hence, attackers should be in the mindset of tak-
ing advantage of the victim without them noticing until 
presented with the ransom note. The note should deliver 
a clear message that provokes or threatens the victim to 
pay, and should have user-friendly and reliable methods 
for the victims to follow in order to pay and regain access 
(Andronio et al. 2015). Moreover, due to the international 
scale of the ransomware market, ransom notes need flex-
ibility in language based on the target’s locale.

The business model breaks when either the integrity of 
the crypto-virus’ encryption is broken, payment transac-
tions are denied or unsuccessful, or the encrypted files 
become unavailable to the decryptor. For the sake of 
maintaining ransomware’s reputation of returning access 
after payment, ransomware authors develop their code in 
a modular fashion to enable simple generation of variants 
by less-skilled coders or even script-kiddies (Mansfield-
Devine 2016; Sinitsyn 2015). Moreover, the develop-
ment of Ransomware-as-a-Service (Cimpanu 2017), has 
further simplified the process for aspiring ransomware 
attackers, while maintaining the quality of attacks.

Since 2013, ransomware has increasingly integrated fin-
gerprinting measures to get the time, date, language, and 
geolocation (Savage et  al. 2015) to facilitate social engi-
neering on a global scale with ransom notes presented 
in the victim’s language. For instance, some ransomware 
identifies the locality and language of the targeted com-
puter and hence displays the note in that language. The 
least costly ransom note is text-based, however, other 
delivery mechanisms have been used including recorded 
voice. Examples of language-sensitive ransomware 
include Reveton, with 10 translations of a text-based ran-
som note and the March 2016 version of Cerber, which 
has 12 recorded voice ransom notes in the 12 most com-
mon languages (Clay 2016).

How ransomware targets user files
The signature characteristics of how ransomware targets 
user files is through mapping the user environment. Tar-
geted files need to be recent and of some value or impor-
tance, therefore ransomware may look at the recent files 

history and usually maps important folders, such as My 
Documents, Pictures, and other generic folders, as well 
as the Recycle Bin (Abrams 2016a, b; Lee et  al. 2017). 
Whilst mapping, a process counts the number of mapped 
files, based on the extension and their location, and 
reports the results to the Command & Control (C&C) 
server (Hasherezade 2016). To determine the impor-
tance of the files, the last accessed date is observed, and 
a difference is calculated between the creation and last 
modified date, both of these indicate the amount of work 
carried out on a file, as well as the user’s level of interest 
(Kharraz et al. 2015). To ensure the files are genuine, the 
ransomware calculates the entropy, which is the informa-
tion density, of the file names and their contents (Kharraz 
et al. 2016). If the entropy is too high or low, resembling 
random content or just padding respectively, the ransom-
ware will interpret the file as auto-generated, and discard 
it from its map. After mapping, it will either request from 
the C&C to start encryption along with the number of 
files targeted, or instantly start encrypting (Hasherezade 
2016; Kharraz et al. 2016).

The ransom message may take the form of an appli-
cation, Blue Screen of Death, a text file on the desktop, 
screen-saver or other means of gaining the user’s atten-
tion. The encryption phase has varying levels of robust-
ness, from the trivial coding of base64 to Advanced 
Encryption Standard (AES), where the most common 
form is AES-256 for symmetric encryption (Savage et al. 
2015; Mansfield-Devine 2016). Additionally, the names 
of the files will frequently be changed to signify locking, 
often adding an extension related to the ransomware 
family name.

Related work
Many researchers (Andronio et  al. 2015; Lee et  al. 
2016; Kharraz et al. 2016; Sgandurra et al. 2016; Zscaler 
2016) agree that crypto-ransomware’s typical behav-
iour involves the manipulation of files and displaying 
a threatening message, which can be identified through 
the ransomware’s use of Windows API function calls. It is 
possible to monitor read, encrypt, and delete operations 
called at the user-level, which are then passed onto the 
kernel to the input/output (I/O) scheduler (Kharraz et al. 
2016). According to (Kharraz et al. 2016) there are three 
ways ransomware encrypts files: (i) overwriting originals 
with the encrypted versions, (ii) encryption then unlink-
ing of the originals, and (iii) encryption and secure dele-
tion of the originals.

Behavioural heuristic detection through the mapping 
of Windows API function calls can be useful for detect-
ing potential ransomware attacks, but it may suffer from 
high false positive rates (for example, the legitimate 
owner of the files may choose to encrypt their files, which 
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would exhibit ransomware-like behaviour). Therefore, 
it is important to complement the behavioural heuristic 
approach with techniques based on deployment charac-
teristics of ransomware, including possible classification 
to ransomware families. This will enable more subtle and 
more accurate behavioural analysis—such as a typical 
sequence of actions and timing of Windows API func-
tion calls, as well as other behavioural patterns – to be 
considered before deciding whether a particular set of 
activities have a high probability of indicating a ransom-
ware attack, or even, it represents known behaviour of a 
particular ransomware family. As ransomware families 
may evolve (e.g. by changing the function calls used), it 
is important to still be able to detect potentially mali-
cious behaviour of the new variants. Our contribution is 
through modelling the higher-level behaviour of the sam-
ple and analysing them to determine if they represent a 
potential ransomware deployment taking place.

Tools and strategies for analysing ransomware
The development and use of sandboxes in the security 
industry has enabled a secure environment for the acti-
vation and analysis of malicious samples. Monitoring 
tools are integrated into sandboxes to observe and report 
on the sample’s behaviour at the user and kernel-level. 
Malware analysis is available online at VirusTotal.
com, hybrid-analysis.com and Malwr.com, as 
a bare-metal sandbox such as Barecloud and BareBox 
(Yokoyama et  al. 2016), and as a package such as Ran-
Sim (KnowBe4  2017), REMnux (Zeltser  2014), Cisco 
(Umbrella  2016; Zscaler  2016; SonicWall 2016) and the 
well-known Cuckoo Sandbox (Ferrand 2015; Yokoyama 
et  al. 2016; Kharraz et  al. 2016). Cuckoo Sandbox allows 
the submission of Dynamic Linked Libraries (DDLs), Java 
files, binary executables, URLs, MS Office documents, and 
PDFs as samples (Ferrand 2015). Several researchers have 
developed analysis systems for the detection and classifica-
tion of ransomware threats including Unveil (Kharraz et al. 
2016), HelDroid (Andronio et  al.  2015), EldeRan (Sgan-
durra et al. 2016), and CloudRPS (Lee et al. 2016).

Kharraz et  al. (2016) developed a ransomware detec-
tion and classification system called Unveil that identifies 
ransomware based on its behavioural constructs. Unveil is 
fully automated, and works with Cuckoo Sandbox, where 
they submitted hundreds of thousands of malware sam-
ples into Windows XP SP3 virtual machines. The analy-
sis returned a high percentage of successful detections of 
samples of known ransomware. The author’s approach 
is through monitoring access patterns of the sandbox’s 
filesystem at the kernel-level, as well as pattern matching 
of text in the ransom note for threatening phrases.

Sgandurra et  al. (2016) developed an automated pro-
gram for the dynamic analysis of ransomware, called 

EldeRan, which uses machine learning to classify mali-
cious samples based on their early behaviour. They have 
mapped key behavioural features to enable the detec-
tion of new variants and families. The program needs a 
few behavioural characteristics for training, for which 
they used Regularised Logistic Regression classifiers. 
The outcome is a detection system that has less than 6% 
error-rate, and above an average of 93% at detecting new 
ransomware families.

EldeRan (Sgandurra et  al. 2016) works with Cuckoo 
Sandbox, machine learning and negative feedback to 
determine a set of key features for ransomware. Train-
ing data, consisting of benign software and malware, 
are dynamically analysed based on five attributes: API 
invocations, use of registry keys, file or directory opera-
tions, Internet download activity, and hardcoded strings. 
EldeRan was trained in Windows XP SP3 32-bit, which is 
more vulnerable than later editions of the Windows OS 
suite. However, since the OS has been deprecated since 
2014, it would have been beneficial to test or train a ver-
sion on Windows 7 or later. This would have given a good 
comparison of how well the system works over different 
generations.

Identification of ransomware families is indeed a valu-
able research angle, as demonstrated by several other 
papers. Homayoun et al. (2017) used Sequential Pattern 
Mining to detect best features that can be used to distin-
guish ransomware applications from benign applications. 
They focussed on three ransomware families (Locky, Cer-
ber and TeslaCrypt) and were able to identify a given ran-
somware family with a 96.5% accuracy within 10 s of the 
ransomware’s execution.

CloudRPS (Lee et  al. 2016) is a cloud-based ransom-
ware analysis system, which supervises an organisation’s 
activity over the internet. Based on behavioural analytics, 
it quarantines and classifies suspicious downloads, which 
are analysed dynamically in a sandbox.

Andronio et  al. (2015) developed HelDroid, which 
analyses and detects ransomware on Android devices, 
where the system monitors actions involving locking, 
encryption, or displaying a ransom note. The detection 
of threatening text uses optical character recognition 
and natural language processing to facilitate detection 
in potentially any language. Like Unveil, HelDroid moni-
tors the ransomware’s access to system APIs for locking, 
encryption, network activity, file renaming and deletion.

Another promising approach for detecting the pres-
ence of ransomware (and malware in general) is by moni-
toring the energy consumption profile of the device. This 
approach could be more robust compared to other detec-
tion techniques based on the behaviour or pattern pro-
file of the device, since it is harder to hide or fake energy 
consumption characteristic. A paper by Azmoodeh et al. 
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(2017) demonstrated the feasibility of this energy con-
sumption monitoring approach for detecting potential 
ransomware apps on Android devices. They managed to 
achieve a detection rate of 95.65% and a precision rate of 
89.19%, which point to the feasibility of this approach.

Tools for combatting ransomware
There are also tools that can be used to protect against 
ransomware, for example by early detection of ransom-
ware attacks in progress and/or through recovery meas-
ures to neutralise the need to pay the demand. These 
tools are valuable and complementary to the work we 
present in this paper. Several of these tools are described 
below for completeness but they are not discussed fur-
ther in this paper.

PayBreak (Kolodenker et  al.  2017) took a proactive 
approach in combatting ransomware by implementing a 
key escrow mechanism in which hooks are inserted into 
known cryptographic functions such that the relevant 
encryption information (the symmetric keys) can be 
extracted. This approach came about from an insight that 
efficient ransomware encryption needs a hybrid encryp-
tion in which symmetric session keys are stored on the 
victim’s computer (in particular, their key vault, which 
is secured with asymmetric encryption allowing the vic-
tim to unlock the vault using their private key). After the 
victim’s computer is infected with ransomware, they can 
access their vault and PayBreak attempts to decrypt the 
encrypted files using the symmetric session keys stored 
in the vault, therefore saving the victim from paying the 
ransom.

Another approach to recover from a ransomware attack 
without needing to pay a ransom is by copying a file when 
it is being modified, storing the copy in a protected area 
and allowing any changes to be made to the original file. 
This approach is used by ShieldFS (Continella et al. 2016), 
which keeps track of changes made to files. When a new 
process requests to write or delete a file, a copy is created 
and stored in a protected (i.e. read-only) area. If ShieldFS 
decides later that this process is benign, the copied file 
can be removed from the protected area as the assump-
tion here is that the original file has not been encrypted 
by ransomware. However, if ShieldFS determines that a 
process is malicious, the offending process will be sus-
pended and the copies can be restored, replacing the 
modified (encrypted) versions.

Redemption (Kharraz and Kirda 2017) uses a similar 
approach to ShieldFS, but in Redemption, file operations 
are being redirected to a dummy copy. This technique 
creates a copy of each of the files targeted by the ran-
somware, and then redirects the filesystem operations 
(invoked by the ransomware to encrypt the target files) 
to the copies, hence leaving the original files intact. 

Redemption uses the Windows Kernel Development 
framework to redirect (“reflect”) the write requests from 
the target files to the copied files in a transparent data 
buffer.

Methodology
We developed a predictive model of ransomware, in 
our attempt to characterise all variants of each family of 
ransomware into one model. The process included the 
development of a classifier (to parse, classify and output 
graphs detailing the behavioural constructs of a ransom-
ware), as well as creating a safe environment to analyse 
the ransomware samples.

In conjunction to this model, we carried out a user 
study to get a picture of ransomware deployment process.

Ransomware deployment predictive model
Designing a model to predict deployment characteristics 
of all ransomware families is not a trivial task, because 
different malware authors are likely to develop their code 
base differently. Furthermore, there is a high chance of 
code evolution and adaptation over time, as some ran-
somware source code may be made available and shared 
among malware authors. However, there are likely some 
similarities among ransomware families in the flow 
between the stages of execution.

The 18 ransomware families investigated in this 
research are Cerber, Chimera, CTB-Locker, Donald 
Trump, Jigsaw, Petya, Reveton, Satana, TeslaCrypt, Tor-
rentLocker, WannaCry, CryptoLocker, Odin, Shade, 
Locky, Spora, CryptorBit, and CryptoWall. These were 
chosen based on their threat-level, amount of infections, 
originality and media coverage. The details about three 
influential ransomware samples (TeslaCrypt, Cerber and 
WannaCry) are provided in "Mapping ransomware vari-
ants to the Randep model" section.

We looked at the Windows Application Programming 
Interface (API) function calls made by these ransomware 
families, in order to understand what activities a ransom-
ware strain might do, and what stages it might get into. 
There are thousands of Windows API functions, and each 
sample analysed would use hundreds of those multiple 
times, making classification of functions into our ran-
somware deployment model a laborious process. Hence, 
we made a collection of all functions used by samples and 
reduce them into a list for classification into the model. 
To enable the plugging in of functions into the model, the 
category and description are gathered from Microsoft’s 
web site to decrease the load of the classification process; 
either manually or automatically through an API scraper 
developed in our research. As a result of this exercise, we 
developed a model called Randep, being an amalgama-
tion of ransomware and deployment. The Randep model 
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contains eight stages that pair with matching function 
calls.

Development of Randep classifier
Cuckoo generates JSON reports for each sample ana-
lysed, detailing Windows API function calls, network 
traffic, loaded libraries, registration keys, and file I/O 
operations. Figure  1 shows a flow chart of the Randep 
classifier, which classifies Cuckoo reports into Randep 
graphs. Five of the six main processes (parser, catego-
rise, classify, Randep map, and plot) are handled by the 
Randep classifier, which calls the remaining process 
(web scraper), as a subprocess. Since the size of a typical 
Cuckoo report sits in hundreds of MBs, processing each 
one on every invocation of the classifier would be costly. 
Hence, the results are permanently stored as JSON files 
at the end of each process to decrease RAM cost, and to 
extract key information about the binary. The Randep 
classifier is available online with examples from https​://
githu​b.com/Hullg​j/repor​t-parse​r.

Classification of Windows API functions into the Randep 
model
The Randep classifier’s parser maps Windows API func-
tions, signatures, registration keys, and network calls into 
categories of the eight states defined by the probabilistic 
Randep model. The classification of functions into the 
states of the Randep model can be carried out manu-
ally or with the use of machine learning. We considered 
the use of machine learning as future work, but it is out 
of the scope of this paper. The work of manual classifi-
cation has been reduced through the categorisation of 
functions and the API scraper’s gathering of descriptions 
and Microsoft API web page links. The results were com-
bined using a Python script called class_compare.
py, which outputs any conflicts of functions in different 
states. Those that had a conflict were discussed between 
the team members until an agreement was reached on 
the appropriate class for a particular function.

The classification of the Windows API functions into 
the Randep model serves as a template or skeleton for 
the Randep classifier to map a ransomware sample’s 
function calls into states. However, further adjustments 
to the model should be made in cases where a particular 
function fails to sufficiently define its state within to the 
Randep model.

Sandbox hardening
Sandbox hardening involves denying any malicious activ-
ity from leaking between privilege rings, or out from 
the virtual machine (VM) container, as well as ensuring 
the analysis system is not detected, and that the sample 
will activate. As a simple precautionary measure, stealth 

malware is known to sleep or use stalling code to prevent 
detection while under surveillance in a sandbox (Sikorski 
and Honig 2012). However, most malware authors intend 
to promptly unleash the payload to avoid failure through 
a user restarting the machine or being detected by anti-
virus software (Kharraz et  al. 2016). Developments of 
hypervisors including VMware and Oracle’s Virtual-
Box have been tested and improved for flaws where an 
attacker can escape into the physical machine or affect 
the bare metal (Balazs 2016; Duckett 2017). A well-
known and secure sandbox, Cuckoo Sandbox1 has been 
developed with security in mind, however; some malware 
is known to detect the analysis environment, and security 
analysts should take actions to defend against such vul-
nerabilities (Ferrand 2015).

It is crucial to harden the system to prevent leakage 
from guest to host. We used a tool called Pafish (Para-
noid Fish2), which allows security researchers to develop 
VMs with anti-fingerprinting strategies. To decrease 
the number of flags generated by Pafish and harden the 
sandbox VM, we copied the system information from a 
bare-metal machine into the VM’s configuration, allo-
cated 2-CPUs, 4 GB RAM, 256 GB HDD in VirtualBox, 
and used antivmdetection.py from github.com/
nsmfoo/antivmdetection.

The user environment was populated with programs, 
files and folders automatically using VMCloak and the 
antivmdetection script. The antivmdetection 
script required a list of filenames, which can be automati-
cally generated using a random word generator at ran-
domwordgenerator.com, as well as a range of size for 
the files. Injecting the script to run on each submission 
of a sample will avoid the VM from being fingerprinted 
based on information of the files and folders. Using 
VMCloak we installed programs including Adobe Reader 
9.0, Google Chrome, MS Office 2007, and Java 7 (some 
of these are old or legacy software, but they are still often 
found in potential target machines, hence their inclusion 
in the VM configuration).

User study methodology
As part of our research, we also wanted to ask the general 
public about their experiences with ransomware attacks 
to get a picture of how ransomware gets deployed. To get 
this information, we developed questionnaires, with the 
main target groups being students, SMEs in the UK, as 
well as universities in the UK and in the US.

1  https​://cucko​osand​box.org/.
2  https​://githu​b.com/a0rte​ga/pafis​h.

https://github.com/Hullgj/report-parser
https://github.com/Hullgj/report-parser
https://cuckoosandbox.org/
https://github.com/a0rtega/pafish
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We wanted a clear, manageable scope, but also aimed 
to find a high number of victims for the best possible 
result. Being hit by ransomware can be a sensitive subject 

to many organisations, hence the scope had to be decided 
carefully. Being part of a university research project, we 
wanted to learn from other students and universities. 

Start

End

Parser

Categorise

Plot

Cuckoo report 
for each binaryParser Report

Classify Report

Web Scraper

List of APIs

Any API categorised?No

Randep Map

Randep Model
Pop categorised APIs 

from List

Maps of each binary

Classify:
automated or manual

Any new APIs?

Yes

No

Graphs of each binary

Yes

Fig. 1  Flow chart of Randep classifier with steps through the parser, categoriser, classifier, mapper according to the Randep model, and output of 
results as a graph
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Students are typically active online, with limited knowl-
edge of the threats. While getting information from 
them, we also wanted to spread awareness of ransomware 
attacks. The expectation was that universities and stu-
dents would be more open to participate in a study con-
ducted by other students, while at the same time, being 
the likely targets.

To widen the scope for more hits, we decided to include 
SMEs. SMEs are also potential targets for ransomware 
attacks, and they are often seen as an easy target by the 
attacker, due to the likelihood that they do not have a 
dedicated security team, or the relaxed atmosphere in 
their operation (NCSC and NCA 2018).

We gave questionnaire respondents an opportunity 
to participate in a follow-up interview to gain further 
insight into the attack, as well as a better understanding 
of the respondents’ views on ransomware.

Questionnaire generation
Three separate questionnaires were created, one for 
each target group (students, SMEs and universities). The 
questions were mostly the same, but small alterations 
were made considering the technical orientation of the 
respondent group. Forming the questions, the assump-
tion was made that all participants for the student ques-
tionnaire were in higher education in the UK or in the 
US, and meeting the minimum university-level English 
language requirements. Additionally, the student ques-
tionnaire questions assumed that the respondents were 
not technically oriented. The university and SME ques-
tionnaires were formed with the assumption that the 
respondents were working in the IT sector with a higher 
level of technical understanding. Notwithstanding, this 
limitation was taken into consideration that respondents 
may perceive questions in different manners and have 
different backgrounds.

Respondents were asked to give their consent before 
proceeding. If the respondent indicated that they had not 
been previously infected by ransomware, the question-
naire would end, otherwise questions related to when 
and how the infection happened and what operating 
systems were involved would be asked. Based on their 
answers, further questions were presented and some sec-
tions skipped. The final part was always the same, and 
included further details about the attack, such as how 
many devices were infected and whether data could be 
recovered.

Questionnaire distribution
We carried out the initial student questionnaire at our 
University. To reach the students, the communication 
officers at each School were contacted, asking them to 
help by posting the questionnaire in different newsletters 

and blogs around the University. The questionnaire was 
also posted on several social media sites. The student 
questionnaire was sent out in March 2017.

The strategy with the Universities was to gather con-
tact details for the IT department of each University and 
contact them asking whether they would be willing to 
participate in our research. Only if they agreed, the link 
to the online questionnaire was provided. This strategy 
was used because an email coming from an unknown 
source can be seen even more suspicious if it includes a 
link. Universities in the UK were contacted in April–May 
2017, and universities in the US in June–July 2017.

SME contact details were gathered from company web-
sites. A similar strategy to the one with the Universities 
was used, where first their willingness to participate was 
enquired. The SMEs were contacted in June–July 2017.

Interviews
The questionnaire was kept completely anonymous. 
However, at the end of the questionnaire, the respond-
ents were given an opportunity to provide their email 
address and volunteer for an additional interview. Eight 
respondents volunteered to proceed to the in-depth 
interview.

The interviews were conducted via Skype, phone or 
email, depending on the respondent’s preference. The 
questions mainly focused on getting further details of the 
most recent attack they talked about in the questionnaire, 
but also on getting information about their planned and/
or implemented defence measures against ransomware 
attacks. The interview questions were similar in each 
interview, but were altered based on the responses the 
participants had given in the questionnaire. During each 
interview, the discussion was audio-recorded with the 
permission of the interviewee. Afterwards, the audio data 
were typed for record keeping and qualitative analysis.

Results, analysis and discussion
This section presents the results and analysis of applying 
the Randep model on 18 families of ransomware, along 
with the results and analysis of the user study. Each part 
is accompanied by relevant discussion to explain the 
findings and insights gained from the research.

Model of predictive nature of ransomware
If we look at the higher level, ransomware (in particular, 
crypto-ransomware) will likely have three stages: stealth 
(in which its main priority is to remain undetected while 
it prepares the groundwork for the ransomware attack), 
suspicious (in which it starts carrying out the damaging 
part of the attack, but it may not be detected straight 
away), and obvious (in which it makes its presence known 
to its victim, namely by notifying of its demand through 
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a threatening message, and by deleting the victim’s files). 
The transition at the higher level is pretty straightfor-
ward: stealth, followed by suspicious and then finally 
obvious.

Looking deeper, there are several lower level stages 
that ransomware may exhibit. These are probabilistic in 
nature, in a sense that not all ransomware strains will 
have all of these stages and/or the transition sequence 
between stages may differ. The lower level stages are:

•	 Fingerprint creating signatures of the OS’s features 
and determining suitability for payload deployment.

•	 Propagate exploring the possibility of lateral move-
ment within a network or connected devices.

•	 Communicate sending and receiving data from the 
attacker’s C&C server.

•	 Map reading the contents of suitable files in the vic-
tim’s environment.

•	 Encrypt encrypting potentially valuable data on the 
victim’s computer.

•	 Lock reducing or disabling the availability of the OS 
to the victim.

•	 Delete overwriting or unlinking the contents of the 
victim’s data.

•	 Threaten presenting a threatening message to force 
the victim to pay up.

Figure  2 depicts our Randep predictive deployment 
model of ransomware. We have also developed a Randep 
classifier, which maps the Window API function calls, 
signatures, registration keys, and network calls into cat-
egories of the eight stages outlined above.

Lock-type ransomware would at least employ lock and 
threat stages. The majority of new ransomware families 
(> 95% in 2016) are of the crypto variety, therefore it is 
worth to focus on the actions of this type of ransomware. 
Crypto-ransomware has at least three stages: generating 
a map of files to encrypt, encrypting them, and display-
ing a threat. We consider the mapping activities to be a 
stealthy operation, since it would not alter the user expe-
rience, whereas the encryption activities are suspicious, 
as they will involve a “write” operation to create a new 
file, and the threat is obvious to the user, as it should 
spawn a window to cover the majority of the desktop to 
draw the user’s attention.

Each analysed ransomware sample behaved differently 
in terms of Windows API function calls. Some started 
encrypting immediately after entering the device and oth-
ers spent more time on communicating, mapping, finger-
printing and/or propagating. However, there were some 
function calls that appeared in multiple results. SetF-
ilePointer could be seen as a part of many encryp-
tion processes, as well as CryptEncrypt. Most samples 
did some mapping or fingerprinting by enquiring system 
info by calling functions such as GetSystemTimeAs-
FileTime. Functions NtTerminateProcess and 
LoadStringW were also called by many samples, the 
former can be seen to represent the locking stage and the 
latter the threatening stage (displaying the ransom note).

The first functions called by the samples (prior to 
encryption) are the ones that could be used for ran-
somware detection. For example, in the case of Cerber, 
the main encryption phase starts only after 330 s. Also 
types like WannaCry and TeslaCrypt spend more time 

Fig. 2  Predictive model of ransomware deployment methods
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fingerprinting and profiling their target. During this time, 
there is a chance to stop the execution before the real 
damage is done. Ransomware types that begin encryp-
tion immediately (e.g. CryptoLocker and Satana) are 
more challenging to stop. Possibly, if the plug is pulled 
immediately after the device is infected, at least some 
files could be saved. In other cases, such as Jigsaw, the 
ransom note is displayed before encryption starts, mean-
ing the encryption phase could possibly be stopped by 
shutting down the device as soon as the ransom message 
is seen. The function calls can be used for ransomware 
detection in automated future solutions.

Randep model case distinction
The Randep model has two levels of stages: the higher 
level denotes stealth, suspicious, and obvious, and each 
contain other finite stages at a lower level. Since each 
lower level stage can be processed in parallel, it is not 
straightforward to determine which process starts and 
ends first. So instead, we look at any edges between 
stages measured in terms of a control flow diagram, 
propagation time, mutual parameters, CPU threads, call-
backs, and other processes. Our research has developed 
potential links for each stage at both higher and lower 
levels, as shown in Fig. 3. The links between stages repre-
sent two hypotheses between the two connected entities, 
where the direction is indicated by the order of letters in 
the subscript, e.g. HFC is a hypothesis that F (Fingerprint 
stage) is followed by C (Communicate to C&C stage), as 
opposed to HCF , in which C is followed by F.

At the higher level of the Randep predictive model, 
we hypothesise a flow from stealth to suspicious to 

obvious; HStSu ⇒ HSuO . Stealth is first due to ransom-
ware needing to scope out a suitable environment for 
deployment, to avoid detection by anti-virus vendors, 
and to appear as normal to the victim. Suspicious activ-
ity acts second, as the ransomware needs to hook its 
process and access the required privilege level to carry 
out malicious behaviour, which might seem suspicious 
to some vigilant users. The final stage is obvious, as 
ransomware’s trait is to threaten the user into paying 
the attacker’s demands as well as blocking the user’s 
access to their important files.

At the lower level, we hypothesise potential flows 
either within the same high level grouping, or across 
different high level groups. For example, in the stealth 
high level group, the process is expected to flow as fol-
lows: HFP ⇒ HPC ⇒ HCM . In other words, the typical 
start to end process from fingerprinting to mapping 
will go through propagation and communication stages 
in between. However, we may consider P and C as 
optional, which means that it is possible to have HFM 
or HFC ⇒ HCM or HFP ⇒ HPM without going through 
P and/or C. In the transition between suspicious to 
obvious groups, the process would typically flow 
from HEL ⇒ HLD ⇒ HDT  , as ransomware would start 
encrypting files in the background. When finished, the 
ransomware would lock the user out, and then delete 
traces of the original files and any processes, before 
finally delivering the threatening message. Neverthe-
less, it is possible that some ransomware variants may 
start showing the threatening message before encryp-
tion takes place (e.g. Donald Trump and Jigsaw ran-
somware), or while carrying out the encryption process 
at the same time (e.g. Cerber and Satana).

Fig. 3  Potential links between stages at lower and higher levels
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Preventative action hypothesis
Usually the threatening message indicates that it is oblig-
atory to refrain from shutting down the computer, and 
proceed with the demands, otherwise the decryption key, 
user files or decryption mechanism will be lost, or pay-
ment will go up. Alternatively, ransomware that corrupts 
the Master Boot Record and encrypts the MFT, such as 
Petya instigates a reboot into the ransom note, block-
ing access to the operating system. Damage to the user’s 
environment occurs after the stealth group of stages have 
been deployed. We assume that all crypto-ransomware 
maps their target to find the files that need encryption, 
or to read files as part and parcel to the encrypt stage. 
Hence, preventative action may be more effective if it took 
place during the map stage.

Stopping ransomware in its tracks is fairly simple if you 
consider every unauthorised read or write operation on 
your files. However, this would entail a heavy bias toward 
false-positive detections of applications such as archiv-
ing tools, and hence decrease user experience and per-
formance. There needs to be a good balance, preferably 
with a lower false acceptance rate for computer users. 
Since allowing the sample to continue past the map stage 
would lead to potential damage, it would be unreasonable 
to take action on the end-point machine.

Mapping ransomware variants to the Randep model
The Randep classifier produces graphs of timestamps of 
Windows API function calls per sample, as well as graphs 
that have been classified according to the Randep model. 
We analysed 18 different ransomware families, three of 
them (TeslaCrypt, Cerber and WannaCry) were analysed 
in depth, due to their high infection rate and date of dis-
covery being around a year apart from 2015 to 2017.

TeslaCrypt
Three variants of TeslaCrypt were analysed. The key 
identifiers include deploying techniques to evade analysis 
environment, fingerprinting, communicating to known 
malicious IP addresses and domain names, connecting to 
a hidden service through TOR, injecting binaries, adding 
itself to the list of start-up programs, modifying the desk-
top wallpaper, dropping known ransom notes, replacing 
over 500 files, and deleting the shadow copy of user files.

Key identifiers of TeslaCrypt The Randep classifier 
processed the reports generated from Cuckoo Sand-
box and gathered 28 signatures, which mainly involved 
fingerprinting, file handling, and network activity. The 
malware reportedly encrypted 2290 files, which was 
indicated through a successful call to MoveFileWith-
ProgressW, which took place in folders including the 
user’s root, Desktop, Documents, Downloads, Pictures, 
Public, Videos, Recycle Bin, AppData, MSOCache, 

Program Files, and Python27. All encrypted files kept the 
filenames and extensions, but the .ecc extension was 
appended to them.

TeslaCrypt attempts to fingerprint and evade detec-
tion through various strategies including scanning reg-
istry keys and executables for the presence of anti-virus 
vendors and sandbox analysis systems including Cuckoo 
Sandbox, as well as other standard fingerprint tech-
niques. The samples delayed the analysis for at least 4 
mins 20 s, through the use of a call to NtDelayExecu-
tion, which issues a sleep command on one or more of 
its processes or threads.

Suspicious network activity was detected as the sam-
ples attempted to connect through a TOR gateway ser-
vice at epmhyca5ol6plmx3.tor2web.fi, a tor2web 
domain name. A tor2web URL enables users to connect 
to a TOR service, however; without the use of an active 
TOR router or browser it does not anonymise the session.

Control flow of TeslaCrypt As shown in Fig. 4a, within 
1 s, TeslaCrypt deploys fingerprinting, communicating, 
and mapping states. This enables the initial setup of the 
malware to determine whether it is in a suitable environ-
ment, to establish a channel with the C&C and start the 
preliminary stages of the attack. Following is the lock-
ing state, in which after further inspection we notice that 
the malware has called NtTerminateProcess. How-
ever, it is clear this is not restricting the use of the desk-
top, and has been removed from the flow control graph. 
At 41.89 s the encrypting state follows locking, however; 
looking at the function calls we see an early call to Get-
FileInformationByHandleEx, while the rest of 
the functions in that state start after 428 s. Since Get-
FileInformationByHandleEx is a borderline func-
tion call and could also be classed in the mapping state, 
we have removed it from TeslaCrypt’s flow model, which 
amends the start of encrypting to 428.48 s. Another 
adjustment is to the threatening state, which started 
writing to the console with SendNotifyMessageW 
at 42.21 s, but did not draw the graphical user interface 
(GUI) with the ransom note until 470 s. The revised state 
flow model is shown in Fig. 4b with a flow in the order as 
follows: fingerprinting, communicating, mapping, delet-
ing, encrypting, propagating and threatening.

The flow model of TeslaCrypt has a long deploy-
ment time from mapping the user environment to the 
start of any suspicious or obvious class activity. Look-
ing at the function call flow, as shown in Fig.  5, the 
state starts with a call to GetFileType, but most of 
the functions in that state are called from 41 s to 45 s. 
One significant function that carries out mapping is 
NtReadFile, which reads data from a file into a buffer, 
and is called 2333 times; just 43 times more than the 
number of files encrypted. The NtResumeThread 
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function, which resumes a previously delayed thread, is 
called for the first time at 472.43 s. Shortly after, a call 
to DeleteFileW starts the deleting state, followed 
by states of encrypting and propagating. At 429.28 s, 
TeslaCrypt deletes the shadow copy of Window’s back-
ups through a silent execution of the CreateProcess-

InternalW function with the following command line: 
“  C : \Windows\System32\vssadmin.exe”deleteshadows/

all/Quiet . The encrypting state shows the malware’s call 
to CryptAcquireContextW to get the handle to the 
cryptographic key shortly followed by MoveFileWith-
ProgressW, which signifies the replacement of original 
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files with ones that are encrypted. The replacement of 
2290 files takes 41.27 s, i.e. approximately 55 files/s.

Cerber
Key indicators of Cerber’s maliciousness include finger-
printing, self-decryption, mapping the user environ-
ment, creating files, attempting to access network shares, 
injecting itself into other processes, and attaching to a 
modified DLL. The sandbox detected a network trojan 
going from the sandbox to 178.33.158.4 and 178.33.158.9 
on port 6893. The malware attempted to connect to a 
server with an IP range 178.33.158.0–178.33.163.255. 
Files were deleted, the background was changed showing 
the ransom note, and a notepad showed the threatening 
message as well as instructions how to pay and release 
the documents.

Key identifiers of cerber The parser gathered 22 signa-
tures from the analysis, which mainly involved evasion, 
fingerprinting, networking and file handling function-
ality. Cerber tries to detect an analysis system through 
checks for the presence of Cuckoo Sandbox’s Python 
scripts agent.py and analyzer.py, whether 
there is any human activity, as well as the name, disk 
size, memory size, and other qualifying attributes of 
the machine. The file handling functionality involved 

Cerber modifying 87 files located in directories includ-
ing root, AppData, Desktop, Documents and custom 
ones spanning from root. The modified files involved 
the use of function calls to MoveFileWithPro-
gressW, where the names are scrambled and the 
extensions are changed to .85f0.

Control flow of cerber Looking at Fig. 6a, b, we see the 
flow of Cerber between states that start in order of fin-
gerprinting, mapping, propagating, communicating, 
encrypting, threatening, locking, and deleting. The first 
six states occur over 310 s sooner than locking and delet-
ing. Figure 6b shows a zoomed-in section of the start of 
the process, and clearly shows the ordering of the first six 
states.

This sequence of events contradicts the hypothesis of 
the Randep model, shown in "Randep model case distinc-
tion" section. Despite encryption activating after map-
ping, it appears significantly close to the other states in 
the stealth class of the Randep model. Threatening state 
also appears unusually close to the stealth class, and out-
of-order by coming before locking, which is in the suspi-
cious class of the model. Further analysis of the function 
calls related to encryption and threatening should reveal 
this discrepancy with the hypothesis of the Randep 
model, and Cerber’s expected behaviour.
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The encryption of files begins with CryptEncrypt 
and CryptAcquireContextW at 329 s and ends with 
a call to MoveFileWithProgressW, which is called 
from 343 s to 427 s. This means the encryption of 87 files 
took around 98 s, or 0.88 files/s.

The function calls of the threatening state are spread 
out from just after the start and almost at the end of the 
sample’s behaviour analysis. Most of the function calls 
start within 40 s after the activation of the binary, where 
the ones closest include LoadStringW, DrawTex-
tExW and SendNotifyMessageW. Cerber uses Load-
StringW to read parts of the accompanying JSON file 
that stores the configuration settings of the attack vec-
tors. It also uses the function to feed strings into message 
windows, such as for social engineering a response from 
the victim, one example includes the following:

“No action needed. Windows found issues requiring 
your attention. Windows is actively checking your 
system for maintenance problems”.

Cerber then sends the message to the user via SendNo-
tifyMessageW as a pop-up notification.

The DrawTextExW is called 53 times, 10 times at under 
17 s and 43 times at 471 s, being only 3 s before the end of 
the sample’s activity. For the initial 10 calls, Cerber gets 
the date and time information and writes it to a report 
for communicating with the C&C. The final 43 calls are 
used to write the file names of the dropped ransom notes, 
including “R_E_A_D___T_H_I_S___6MZZ6GL_-
Notepad”. Some function calls exhibited behaviour 
that might not fit well with the Randep model’s predic-
tion, including CreateDirectoryW, LoadStringW 
and SendNotifyMessageW, and some earlier calls to 
DrawTextExW.

As shown in Fig.  7, the majority of the function calls 
for encryption are clustered from 329 s to 430 s, with the 
exception of CreateDirectoryW, which is not shown 

and is active from 1.6 s to 340.5 s. The function typically 
creates directories in the Windows user environment, 
and is not solely tied to the encryption process. Omission 
of this function from the Randep model would put the 
threatening state before encryption.

This analysis has discovered that Cerber uses function 
calls of LoadStringW and SendNotifyMessageW 
to trigger a response from the user to activate a pro-
cess, which explains their early activation at 2 s and 29 
s, respectively. Despite generating a warning to the user, 
and being obvious, they are not part of the ransom note. 
These two could have been placed in a new state called 
social engineering.

The DrawTextExW function is part of the threatening 
class and generates the ransom note, but also wrote to 
Cerber’s JSON log. This happened in two stages; feeding 
the log at 16 s and writing the ransom notes from 415 to 
471 s.

WannaCry
Two samples of WannaCry were analysed. The main sig-
natures to identify the malware’s maliciousness include 
its ability to unpack itself, anti-sandbox strategies, fin-
gerprinting, manipulation of files and folders, and setup 
of the TOR router. Over 500 files were encrypted, the 
desktop background was changed to the message of the 
ransom, and a graphical user interface popped-up in the 
foreground of the user’s screen.

Another variant of WannaCry, called mssecsvc.exe 
was also analysed. It carries out checks on the kill-switch 
domain name, and scans for open RDP connections. 
The sandbox was setup without modifying the hosts file 
to make the HTTP GET request to the kill-switch time-
out, and without any open RDP connections. The sample 
scored 3.6 out of 10, and carried out four DNS lookups 
on: www.iuqerfsodp9ifjaposdfjhgosurijfae-
wrwergwea.com which is the domain name used for 
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the kill-switch. Since the address is still registered, the 
sample died.

The process mssecsvc.exe sends datagrams over 
UDP to the subnet mask of its IP block on ports 137 and 
138. These ports are some of the default ones for Net-
BIOS, where 137 is used for the name resolution services 
and 138 for the datagram services. For Windows oper-
ating systems on Windows 2000 or later those ports act 
as a backup for the SMB service and should be blocked. 
Nevertheless, the malware attempts to establish a con-
nection with another computer using NetBIOS, which is 
known for file and printer service sharing over an Inter-
net connection.

Key identifiers of WannaCry WannaCry has similar 
attributes to most ransomware, with the exception of its 
propagation ability across local networks and the Inter-
net. The report parser gathered 23 signatures, most of 
which are similar to those found with Cerber, with the 
addition of an anti-sandbox sleep mechanism, getting 
the network adapter’s name, installing TOR, and bind-
ing the machine’s localhost network address to listen 
and accept connections. The malware enforced a sleep of 
an average 18 min 47 s, which delayed the analysis until 
that time had lapsed. Afterwards, WannaCry encrypted 
the user’s files by mapping generic user account fold-
ers, the recycle bin, AppData and the root folder. It used 
RSA-AES encryption on 3129 files, appending a .WNCRY​ 
to every locked file, where the function used to replace 
the encrypted with originals was MoveFileWithPro-
gressW. The malware also used WMIC.exe to get and 
delete the shadow copy of the user’s files.

Control flow of WannaCry Due to the modular 
approach of WannaCry’s implementation, and the use 
of threads to carry out processes, we see all states apart 
from deleting starting before a second has passed. Look-
ing at the flow of states, mapping and threatening are the 
first to start; both begin at 32 ms, shortly followed by 
encryption at 94 ms. Thereafter it follows: communicat-
ing, fingerprinting, propagating, and locking, finishing 
with deleting at 2.84 s.

Fingerprinting starts much later than predicted by 
the hypothesis, which said it would start first. The ini-
tial part of fingerprinting would be the check to the 

kill-switch domain, however; the function calls involved 
with that process are considered communication states. 
Accordingly, communication passes the domain name 
as a parameter and calls InternetOpenA and WSAS-
tartup as the first function call in the mssecsvc.
exe’s analysis; see the graph in Fig. 8c. Prior to starting 
encryption, WannaCry fingerprints the system infor-
mation with calls to GetNativeSystemInfo, it also 
gets the system time, and memory status. The memory 
check could be a requirements check for starting the 
encryption process, or just to detect the presence of a 
sandboxed environment.

The communication state creates a server and binds 
it to 127.0.0.1 after 87 s, which WannaCry uses to send 
and receive packets over the TOR network. The mal-
ware uses TOR in an attempt to anonymize its network 
data, and to avoid detection. At 106.59 s, the malware 
makes a call to LookupPrivilegeValueW, which 
gets the privilege value and name of the logged-on 
user’s locally unique identifier (LUID). In the propa-
gation state we see the use of OpenSCManager after 
107 s, which opens a connection and the service control 
manager database on a given computer. Then after 17 s 
the local server is shutdown.

WannaCry starts encryption early with a call to 
SetFileTime, it then sets up a new handle for the 
Cryptographic API functions, and decrypts a 16-byte 
string. The encryption of files begins at 2.84 s with 
a call to CryptGenKey, CryptExportKey and 
CryptEncrypt (see Fig.  9). CryptEncrypt car-
ries out the encryption of the files from 2.84 to 60.83 
s. The encrypted contents are temporarily stored in the 
system’s default temporary folder, and the encrypted 
files replace the originals with a call to MoveFile-
WithProgressW at 3.68 s. The encryption ends when 
the original file has been replaced, which is noted by 
the end of MoveFileWithProgressW at 143.88 s. 
Hence the 3129 files encrypted took around 141 s, i.e. 
22 files/s.

The malware spawns a cmd.exe process with-
out showing the window to quietly delete the 
shadow copy of the file system, as follows:  

cmd.exe /c vssadmin delete shadows /all /quiet &

wmic shadowcopy delete &

bcdedit /set {default} bootstatuspolicy ignoreallfailures &

bcdedit /set {default} recoveryenabled no &

wbadmin delete catalog -quiet
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The command is executed at 104.69 s, but the process 
is created later at 116.55 s.

The first time that the user becomes aware of the 
threat is when the malware makes a call to DrawTex-
tExW 86.87 s, with a buffer containing Wana Decryp-
tor 2.0, which is the window title of the GUI shown to 
the victim. Later calls show that the left hand side of 

the GUI is populated first with two countdown timers 
and call to actions including “Time Left” and “Payment 
will be raised on”. This technique attempts to create a 
sense of urgency in the victim meeting the attacker’s 
demands.
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Comparing the three ransomware samples in the Randep 
model
To compare the behaviour of these three ransomware 
strains (TeslaCrypt, Cerber and WannaCry), we pro-
duce a graph mapping a sequence of events (from 0 
to 7) for these strains according to the Randep model. 
Figure  10 shows that out of the eight states, none of 
the three ransomware strains match completely, six 
have pairings, and two have no matches across the 
board, which backs up the Case Distinction discussed 
in "Randep model case distinction" section. TeslaCrypt 
and Cerber both put fingerprinting at stage 0 and 
encrypting at stage 4, which fits with the null hypothe-
sis. All three put communicating and mapping between 
stage 0 and 3, which fits with the hypothesis of the 
higher level of the Randep model. All that showed signs 
of locking put it between stage 6 and 7, fitting in the 
obvious class of the Randep model. Additionally, all 
carried out mapping prior to encryption. Therefore, 

early warning signs of crypto-ransomware is through 
the use of mapping API functions. 

Results and analysis from the user study
Out of 1090 potential respondents contacted, 147 
acknowledged our request, 72 agreed to participate, 
although only 46 gave a response in the questionnaire in 
the end. Out of these 46 respondents, 28 said that they 
had experienced at least one ransomware attack.

From the respondents, eight volunteered to participate 
in an interview; four universities, three SME compa-
nies and one student. In the following sub-sections, the 
results from the questionnaire are presented in the form 
of graphs, and the highlights from the interviews are 
summarised.

Analysis of the data from the user study
The first questions in the questionnaire were to do with 
the approximate date of the attack, the operating sys-
tem of the infected device and the way ransomware was 
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suspected to have entered the network. In 27 out of 48 
cases, a device with Windows 7 operating system was 
involved (Fig.  11). Some responses included more than 
one operating system, hence the number of answers in 
this graph exceed the number of total responses (those 
attacked) for the questionnaire.

The ransomware entry method was enquired only in 
the questionnaires for universities and companies. A total 
of 28 responses were received for this question (compul-
sory question), of which 6 chose unknown. As Fig.  12 
presents, the majority (64.3%) stated that the ransom-
ware entered from a malicious email message; malicious 

attachment (35.7%) being more common than a mali-
cious link (28.6%).

In 63% of the cases reported in our study, the ransom-
ware did not propagate; infection was limited to only one 
device within the organisations (Table 1). Nearly 77% of 
respondents could access their files after the attack. In 
69.7% of the cases, the means to recover files was from 
backup, only one respondent having paid the ransom 
(Fig. 13).

The most common first signs of infection reported 
were the desktop being locked, files going missing and 
Microsoft Office software crashing or failing to open files 
(see Table 2 for the full list of infection signs).

Students were asked an additional question on whether 
the term “ransomware” was familiar to them. Out of 50 
respondents, 28 (56%) answered “no”.

Interviews
We had the chance to interview four security experts 
from universities and three from SMEs. Also, one stu-
dent agreed to give an interview. In the student interview, 
the questions focused on gaining a deeper understand-
ing of how the attack occurred and what, if any, were the 

Table 1  Number of infected devices

Number of devices Number 
of occurrences

0 1

1 17

2 3

3 2

5 1

10+ 3
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Fig. 11  Breakdown of operating systems affected by ransomware
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lessons learned. The questions for the experts were more 
technical (e.g. also querying the organisations’ defences 
against malicious attacks), given the level of experience 
they had.

The student’s ransomware incident was a case 
where the device got locked after attempting to watch 

videos online. The ransom message included a loud noise 
demanding attention, stating that device has been locked, 
accompanied by a phone number for technical support 
to unlock the device. The “technical support” posed as a 
Microsoft team and demanded a payment for their ser-
vices. The person on the phone got remote access on the 
device and seemingly unlocked it. The victim felt the loud 
noise made the situation more threatening and caused 
a panic reaction making them call the number immedi-
ately. The message did not include a demand for a ran-
som payment, the money was only asked on the phone. 
At the time, the victim did not have an external backup, 
but as a lesson learned, they are now more aware of the 
importance of basic security hygiene, including having a 
regular external backup.

Based on the interviews, universities seem more likely 
to be targeted by ransomware than companies. Univer-
sity staff contact details, including email addresses, are 
commonly available online, making targeted attacks eas-
ier. An IT expert from one university stated that emails 
represent approximately three quarters of the attack 
vectors. They mentioned that some attackers even used 
email address spoofing in their attack.

Among the interviewed organisations, a pattern could 
be observed. In most cases, the organisations had had 
only basic defences in place prior to them being infected 
by ransomware. These defences include a firewall and 
anti-virus software. Most had implemented or were in 
the process of implementing more advanced systems. 
A new tool that was brought up in the interviews was 
Sophos InterceptX, including CryptoGuard capabilities. 
Also, in addition to systems and software, the organisa-
tions were putting emphasis on enhancing processes and 
user education on security issues.

In respect of technical solutions, the common opin-
ion among experts was that endpoint security should be 
prioritised. Many attacks are successfully stopped at the 
network level. With current tools, malicious attachments 
are mostly captured before they reach the end user. Due 
to this, when it comes to phishing, attackers are focus-
ing increasingly on email links rather than attachments. 
This trend also highlights the importance of user educa-
tion to prevent clicking of malicious links. It was also said 
that global headlines on ransomware attacks have helped 
bring awareness and raise interest in the topic among 
users. The majority of the contacted organisations were 
planning to improve staff/student training further.

During one interview, an important viewpoint was 
brought to our attention regarding admin policies. Run-
ning everyday operations with admin privileges gives 
ransomware more capabilities to operate on the device 
if infected. Lower privileges can limit, if not stop, the 
damage a ransomware attack can cause. Many of the 
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Fig. 13  Recovery after ransomware incident

Table 2  First signs of ransomware infection

Sign of infection Number 
of occurrences

Desktop was locked 10

Some files went missing 10

Office software such as MS Word and Excel crashed or 
failed to open file

9

Starting up took much longer than usual 5

Computer crashed 4

Computer started to overheat and became very slow 4

Antivirus software was disabled or took longer to start 
up

2

Screen or display started to jitter 2

Computer restarted without my consent 1

Noticed files starting to encrypt on network share 1

Browser window popups appeared 1

Intrusion detection system sent alerts about connec-
tions to blacklisted IP addresses, vulnerable ports, or 
suspicious DNS queries

1

User reported system performance issue 1
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interviewed organisations were in the middle of restrict-
ing the policies for giving out admin policies.

Conclusion
In this work, we analysed 18 families of ransomware in 
order to come up with a model for ransomware deploy-
ment we call Randep. The model was developed from 
background knowledge of Windows APIs, common ran-
somware traits, and threat intelligence of ransomware 
authors’ evolving strategies. At the higher level, there 
are three phases in ransomware execution, starting from 
stealth operations, to suspicious activities, and finally 
obvious actions. Each of these higher level stages may be 
composed of several lower level stages, which are proba-
bilistic in nature (by this we mean not all ransomware will 
exhibit all of them, and the sequence of actions involving 
these stages may differ). The stealth stage includes fin-
gerprinting, propagating, communicating, and mapping. 
The suspicious stage includes encrypting and locking 
activities, while the obvious stage involves deleting and 
threatening actions.

We have identified the mapping stage as an early warn-
ing sign prior to encryption, hence for a more effective 
solution, we recommend to put in place countermeasures 
that can be activated before the mapping activities are 
completed. Surprisingly, most of the ransomware families 
exhibited some form of fingerprinting, and this could be 
local or remote diagnosis of the machine.

This paper also presents a user study into ransom-
ware deployment through questionnaire and in-depth 
interview involving stakeholders from universities and 
SMEs. Ransomware developers have numerous ways to 
execute attacks. Based on our research, in the past few 
years the most common attack vector has been via email, 
more specifically through email attachments. However, 
the experts interviewed in this research suggested that 
attackers are moving more into using email links due to 
the increased use of tools filtering out suspicious attach-
ments from emails. In the interviews, experts pointed out 
that user education and endpoint security are the most 
important focus points in fighting ransomware, due to 
email still being highly used in ransomware distribution. 
Another matter to consider in organisations is the pro-
cess of handing out admin privileges.

Also worth noting is the proportionally high number of 
cases where the ransomware entry method was unknown 
to the user. This phenomenon came up in many of the 
interviews as well: ransomware often resembles normal 
user activity and does not announce itself until files have 
been encrypted and a ransom note is displayed. Also, 
some variants may sleep before activating, making the 
effort to trace back to the entry point challenging. One 
of the most common first signs of infection was that the 

desktop was locked. In many cases, when the first sign is 
observed, it is already too late. Other common signs were 
missing files and being unable to open files. These signs 
can be viewed as red flags and should lead to an immedi-
ate reaction. If noticed in time, damage may be limited.

The results validate the importance of extensive 
backup. Having an off-line backup in a separate loca-
tion is one of the best ways to ensure the safety of data. 
In most cases post infection, the affected device needs to 
be wiped clean and rebuilt. A promising trend observed 
from our user study is that only in one case was the ran-
som demand being paid. Paying the ransom does not 
guarantee decryption of files and only finances criminals 
for further attacks.

One of the goals of conducting this research was 
spreading the knowledge of the threat that ransomware 
imposes, especially to younger people such as university 
students. This proved to be a sensible goal as 56% of stu-
dents who took part in our study were not familiar with 
the term prior to the questionnaire. However, the ques-
tionnaire was delivered to the students before the Wan-
naCry ransomware incident affecting the UK National 
Health Service became a headline news. Were the 
responses given after the attack, the results would likely 
have been quite different.

Threat intelligence predicts ransomware attacks will 
continue to rise. However, with insight and analysis into 
the behaviour of ransomware, we should be able to iden-
tify key areas to thwart any incoming attack. The Randep 
model can act as a template to illustrate the stages of 
deployment of ransomware, and it can be used as an 
agent for detecting early warning signs of variants of 
ransomware.

Future work
We will conduct a detailed analysis of the timing and the 
sequence pattern of the stages of ransomware deploy-
ment in order to come up with effective countermeasures 
for the characteristics exhibited.

The Randep model could be further validated with 
more ransomware samples, as well as testing the detec-
tion of early warning signs when submitting benign pro-
grams that carry out encryption, such as WinZip.

Furthermore, other threat intelligence modelling such 
as Cyber Kill Chain [which has been shown by Kiwia 
et al. (2017) to be useful for creating a taxonomy that can 
be used for detecting and mitigating banking trojans] can 
be integrated into the Randep model to improve its accu-
racy. This will also require more ransomware samples to 
be collected and analysed, in order to develop a more up-
to-date ransomware taxonomy.

The API scraper decreased the load for classifying APIs 
into stages for the Randep model, which was carried out 
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manually, but could also be done automatically through 
machine learning. A text classifier could parse the 
description generated by the API scraper to place it into a 
suitable stage. This would further increase the autonomy 
of the system, enabling classification on the fly.
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