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interventions
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Abstract 

This work proposes a new statistic, the weighted displacement difference (WDD), as a simple test to evaluate crime 
reductions subsequent to place based interventions taking into account trends in comparison areas and potential 
spatial displacement or diffusion of benefits. The motivation is to have both a simple statistic that can give an esti-
mate of the effectiveness of a crime reducing intervention, while also providing a measure of the standard error one 
would expect when examining crime counts simply by chance. The proposed statistic can be calculated in a spread-
sheet with counts of crime before and after the intervention in both treated and displacement areas given matched 
control locations for each.

Code to replicate the analysis as well as an Excel® spreadsheet to calculate the WDD and its standard error can be 
downloaded from https​://www.dropb​ox.com/s/rg7x9​bg1o3​d8nsf​/WDD_Analy​sis.zip?dl=0
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Background
The weighted displacement quotient (WDQ) is a simple 
statistic to identify whether a place-based intervention 
reduced crime in a treatment area relative to a control 
area, while taking into account potential spatial displace-
ment of crime (Bowers and Johnson 2003; Guerette 2009; 
Ratcliffe n.d.). It has been used across a range of crime 
prevention evaluations, such as; burglary prevention 
(Bowers and Johnson 2003), estimating the impact of 
facilities such as public housing (Cahill 2011) or casinos 
(Johnson and Ratcliffe 2017) on crime rates, the crime 
prevention value of community support officers (Ariel 
et al. 2016), the crime reduction effects of closing broth-
els (Soto and Summers 2018), and whether there were 
any impacts on localized property and violence crime 
levels after the introduction of CCTV cameras (Ratcliffe 
et al. 2009).

Here we propose a related, but slightly different sta-
tistic, the weighted displacement difference (WDD). The 
motivation is to contribute a simple test statistic that 
provides an estimate of the uncertainty in the change 
of crime due to an intervention, under the assumption 
that the observed crime counts are Poisson distributed 
random variables. We aim to respond to the assessment 
of the WDQ’s original authors (Bowers and Johnson 
2003: 292) that “It would be useful to extend the analy-
sis to include a test that enabled the researcher to iden-
tify significant levels of displacement”. Although Bowers 
et  al. (2011a) have written briefly about using a simula-
tion approach to accomplish this with the original WDQ, 
both the new WDD test statistic we propose here, and its 
standard error, can be calculated in a spreadsheet. This 
statistic thus yields a simple tool for crime analysts to not 
only answer whether an intervention decreased crime, 
but to also say whether that decrease was larger than one 
would expect, given that crime counts will always fluctu-
ate up or down by some amount simply by chance.
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Methods
Table 1 explains the information needed to calculate the 
WDD. There are four areas; the treated area T, a control 
area comparable to the treated area Ct, a displacement 
area D, and a second control area comparable to the dis-
placement area Cd. These are then indexed by counts of 
crime before the intervention took place with the sub-
script 0, and counts of crime in the post time period after 
the intervention took place with a subscript of 1. Note 
this is one more piece of additional information than the 
WDQ requires, a control area to correspond to the dis-
placement area, which is sometimes considered in the 
evaluation literature but not frequently (Bowers et  al. 
2011a; Telep et al. 2014). We more critically discuss this 
unique requirement in a later section.

Based on this table, one can then identify the change in 
the treated, control, and displacement areas, subtracting 
the pre time period from the post time period.

The WDD is then calculated as:

For a simple example, say crime decreased in the 
treated area by 10 (from 30 to 20), decreased in the con-
trol-treatment area by 5 (from 30 to 25), increased in the 
displacement area by 2 (from 10 to 12), and increased 
in the control-displacement area by 1 (from 11 to 12). 
In this example, the WDD would equal − 10 − (− 5) + 2 
− 1 = − 4. So although the treated area decreased by a 
larger margin, the control-treatment area also decreased 
(what might happen if crime is decreasing in the city 
overall). Because the displacement area also increased in 
crimes relative to the control-displacement area, the treat-
ment effect is further reduced, but still has an estimate of 
decreasing 4 crimes in the combined treatment and dis-
placement areas relative to their respective control trends.

(1)

�T =T1 − T0

�Ct =Ct1 − Ct0

�D =D1 − D0

�Cd =Cd1 − Cd0

(2)WDD = �T −�Ct +�D −�Cd

Note in the case of spatial diffusion of benefits (Bow-
ers et  al. 2011b; Clarke and Weisburd 1994; Guerette 
and Bowers 2009), in which crime decreases were also 
observed in the displacement area relative to the control-
displacement area, those additional crime reduction ben-
efits would be added to the total crime reduction effects 
in the WDD. Thus the WDD is a not a direct analogy 
to the WDQ, but is more similar to the total net effects 
(TNE) estimate, which includes crime reductions (or 
increases) in both the treated and displacement areas in 
its calculation (Guerette 2009).1

Given these are counts of crime, assuming these counts 
follow a Poisson distribution is not unreasonable. While 
no set of real data will exactly follow a theoretical distri-
bution, several prior applications have shown this Pois-
son assumption to not be unreasonable in practice (Maltz 
1996; Wheeler 2016). We later discuss how departures 
from this Poisson assumption, in particular how crime 
tends to be over-dispersed compared to the Poisson dis-
tribution (Berk and MacDonald 2008), will subsequently 
affect the proposed test statistic.

The Poisson distribution has the simplifying assump-
tion that its mean equals its variance, and hence even 
with only one observed count, one can estimate the vari-
ance of the WDD statistic (Ractliffe 1964). Making the 
assumption that each of the observations are independ-
ent,2 one then can calculate the variance of the WDD as 
below, where V(X) is notation to be read as the variance 
of X3:

Subsequently the test statistic to determine whether 
the observed WDD is likely due to chance given the null 
hypothesis that the WDD equals zero is then:

(3)
V (WDD) = T1 + T0 + Ct1 + Ct0 + D1 + D0 + Cd1 + Cd0

(4)WDD√
V(WDD)

∼ N (0, 1)

Table 1  Crime counts used for  weighted displacement 
calculation

Area Pre Post

Treated T0 T1

Control treated Ct0 Ct1

Displacement D0 D1

Control displacement Cd0 Cd1

1  Using the same notation, WDQ = (D1/Ct1 − D0/Ct0)/(T1/Ct1 − T0/Ct0) , 
and TNE =

[

T0(Ct1/Ct0)− T1

]

+
[

D0(Ct1/Ct0)− D1

]

 (Guerette 2009: p. 41).
2  To assume the treated and displacement areas are independent may seem 
on its face false. However, this assumption is equivalent to saying that the 
pre and post statistics for each area are drawn from the same underlying 
mean over time—which is what would occur if the intervention had no 
effect on crime. Hence this is a reasonable assumption on which to con-
struct the null distribution of the test statistic.
3  This is due to the fact that V(X − Y) = V(X)+ V(Y)− 2 · Cov(X,Y) , where 
Cov represents the covariance between X and Y. Assuming independence 
between the measures implies that the covariance term equals zero. Sub-
sequently the standard error of the larger difference equation is simply the 
sum of the variances of the original Poisson counts. In the case this assump-
tion is not met, one would likely expect the covariances between the terms 
to be positive, in which case the estimate of the variance is too large, and 
subsequently the test statistic will be conservative and fail to reject the null 
too frequently.
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This test statistic, what we will refer to as ZWDD , follows 
a standard normal distribution, e.g. ± 2 is a change that 
would only happen fewer than 5 times out of 100 tests if 
the null hypothesis of WDD equaling zero were true. One 
can then identify statistically significant decreases (or 
increases) in crime due to the intervention, while taking 
into account changes in the control areas as well as spatially 
displaced crime.

Note that the test statistic can still be applied even if one 
does not have a set of displacement and control-displace-
ment areas. The user can simply set the displaced areas pre 
and post statistics to zero and conduct the test as is, since 
the zero counts do not add any extra variance into the 
statistic. This property can also be used to test the crime 
reduction effects in the treated and displaced areas inde-
pendently (e.g. a crime reduction estimate in the treated 
area and a separate crime reduction estimate in the dis-
placed area) if one so wishes.

The WDD test statistic is used, as opposed to the WDQ, 
as the ratios to calculate the quotient make the null distri-
bution of the WDQ ill-defined, as the denominators can 
equal zero in some circumstances (Wheeler 2016). This 
property, especially for low crime counts, makes inter-
preting percentages very volatile (Wheeler and Kovandzic 
2018). Examining the differences avoids this, but remains 
simple to understand and only requires slightly more work 
(identifying a matched control area for the displacement 
area) than the WDQ.

An example with discussion
Table  2 illustrates an example of calculating the WDD 
using an example adapted from the appendix of Guerette 
(2009)—examining a strategy aimed at reducing crime in 
rental units in Lancashire, UK. Because this example did 
not have a control-displacement area, we add fictitious 
numbers for illustration purposes.

Based on Table 2, the individual differences over time are:

�T = 110− 207 = −97

�Ct = 318− 308 = 10

�D = 157− 178 = −21

�Cd = 140− 150 = −10

And subsequently the overall WDD for this example is 
then:

The variance of the WDD statistic then equals:

And so the ZWDD test statistic then equals:

So in this case the reduction of a total of − 118 
crimes results in a statistically significant reduc-
tion. A Z-statistic of − 2.98 has a two-tailed p value 
less than 0.003. The standard error of the test statistic 
(the square root of the variance), is approximately 40. 
One can use the same estimate of the standard error 
to estimate a confidence interval around the WDD sta-
tistic. In this case, a 95% confidence interval equals 
−118± 1.96 ·

√
1568 ≈ [−196,−40].

Simulation of the null distribution of ZWDD

To ensure the validity of the proposed test statistic, simu-
lations of the null distribution were conducted to estab-
lish whether the test statistic follows a standard normal 
distribution (i.e. has mean of zero and a variance of one). 
This was accomplished by simulating random deviates 
from a Poisson distribution of a given mean, and calculat-
ing the changes in each of the treatment, control-treated, 
displacement, and control-displacement areas. For each 
simulation the different areas were given the same under-
lying Poisson mean both in the pre and post treatment 
period, so there are no actual changes from pre to post 
in any of the areas. Any inferences from the simulation 
that concluded the intervention decreased (or increased) 
crimes would therefore be false positives. This proce-
dure establishes that the false positive rate for the ZWDD 
statistic is near where it should be if it were distributed 
according to the standard normal distribution. Values 
were simulated from Poisson means of 5, 15, 25, 50, and 
100.

Additionally, we conducted a simulation run in which 
the baseline Poisson mean was allowed to vary between 
the treated and displacement areas, but was again con-
strained to be equal in the pre and post time periods. For 
this simulation run, the Poisson means were randomly 
drawn from a uniform distribution ranging from 5 to 100, 
so either treated or displacement areas could have larger 
baseline counts of crime. The simulation was then con-
ducted for 1,000,000 runs, where one run would provide 
a single estimate of the WDD and the ZWDD test statistic.

WDD = −97− 10+ (−21)− (−10) = −118

V(WDD) = 207+ 110+ 308+ 318+ 178

+ 157+ 150+ 140 = 1568

ZWDD = −118/
√
1568 ≈ −2.98

Table 2  Hypothetical crime control intervention 
and analysis

Area Pre Post

Treated 207 110

Control treated 308 318

Displacement 178 157

Control displacement 150 140
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Table  3 provides the test statistics for each of the 
extreme percentiles corresponding to the standard nor-
mal distribution. One can see that the WDD test statis-
tic in the simulation near perfectly follows the standard 
normal distribution, and still provides a good fit even at 
the extreme quantiles. For example, one would expect a Z 
score of less than − 2.33 only 1% of the time according to 
the standard normal distribution with a mean of zero and 
a variance of one. In the simulation values this occurred 
at most 1.01% of the time (in the Poisson mean of 5), to a 
low of 0.98% of the time (with a Poisson mean of 15). One 
can read the other columns in a similar fashion and see 
that they are all quite close to the expected proportion of 
observations that should fall within each bin. Slight devi-
ations are to be expected due to the stochastic nature of 
the simulation, but these statistics provide clear evidence 
that the null distribution of the test statistic does indeed 
follow a standard normal distribution. This is true both 
for the simulations in which the baseline mean number of 
crimes were constrained to be equal for both the treated 
and control areas, as well as the simulation run in which 
they were allowed to vary.4

One may ask why not simply use the current WDQ or 
TNE and attempt to place standard errors around that 
estimate? Unfortunately, this is not possible because the 
variance of the WDQ and TNE cannot be analytically 
defined in the same manner as the WDD. Both the WDQ 
and the TNE will have differing distributions under the 
null of no change depending on the baseline counts of 
crime. Additionally the extreme quantiles of the null 
distribution of no change for each of those statistics are 
quite volatile, mainly because the denominators in either 
of the statistics (in multiple places) can have very small 
values, causing the entire statistic to result in extremely 
large values (if defined at all) in relatively regular 

situations.5 This point is further illustrated in Additional 
file 1: Appendix, where we calculate the WDQ and TNE 
statistics for the same simulated values as the WDD and 
show their volatility when no changes are occurring in 
the underlying means for either treated, control, or dis-
placement areas.

While this simulation is only of a limited set of val-
ues, and in reality the treated and displacement areas are 
unlikely to have the same baseline Poisson mean, this is 
inconsequential for the WDD statistic (as is shown for 
the last simulation condition where they are allowed to 
vary). As long as the underlying crime counts follow a 
Poisson distribution, ZWDD will closely follow a standard 
normal distribution. It is not necessary to assume that 
all of the treated and displacement areas have the same 
underlying mean for this to be true for the WDD, nor is 
it necessary to have differing suggestions for the strength 
of evidence given different baseline crime counts. This is 
not the case though with the WDQ nor the TNE. One 
cannot give generalizable advice (such as, a TNE statistic 
of + 50 is strong evidence that the intervention was effec-
tive in reducing crimes) as it depends on the baseline 
crime counts as to whether a swing of that size would be 
expected by chance. The same issue affects the WDQ sta-
tistic. It is however possible to give general advice when 
calculating the WDD and its associated ZWDD value.

A note on the power of the WDD test
Due to the volatility of crime statistics, one should be 
wary that even if there is some evidence of a crime reduc-
tion, this test will often fail to reject the null hypothesis 
of no change over time. This is because it is necessary to 

Table 3  Simulation results for no changes in underlying distribution

Poisson mean p < 0.001 p < 0.01 p < 0.05 p > 0.95 p > 0.99 p > 0.999

5 0.0008 0.0101 0.0496 0.0492 0.0098 0.0008

15 0.0009 0.0100 0.0499 0.0493 0.0096 0.0009

25 0.0010 0.0100 0.0497 0.0504 0.0100 0.0009

50 0.0010 0.0098 0.0499 0.0501 0.0099 0.0010

100 0.0010 0.0100 0.0502 0.0500 0.0099 0.0010

Vary [5–100] 0.0010 0.0099 0.0503 0.0501 0.0099 0.0009

Z thresholds Z < − 3.09 Z < − 2.33 Z < 1.64 Z > 1.64 Z > 2.33 Z > 3.09

4  Additionally, the mean and variance of each of the simulated distributions 
round to 0.00 and 1.00 respectively.

5  Ratcliffe and Breen (2011) propose using the Phi coefficient and Soto and 
Summers (2018) use a Chi square and Cramer’s V tests to see if the changes 
in crime counts are statistically different over time. Note this is different 
than asking for an estimate of the standard error around the WDQ statistic. 
So although a Phi coefficient, Chi-Square, or Cramer’s V can potentially tell 
if there were changes over time, it cannot be used to infer either directions 
of the change, nor the magnitude of the change. The WDD statistic we pro-
pose is intended to accomplish both of those tasks.
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have an intervention with effects larger than the inherent 
changes one would expect with count crime data, and in 
the case of lower baseline counts this can be a difficult 
threshold to meet. As an example of this type of floor 
effect (McCleary and Musheno 1981) consider this exam-
ple: say the intervention, control-treated, displacement, 
and displacement-treated area each have around 5 crimes 
on average. This would result in a standard error estimate 
of the test statistic of 

√
8 · 5 ≈ 6.3 . At a two-tailed alpha 

level of 0.05, one would need to have reduced over 12 
crimes (two times the standard error) to reject the null 
that the WDD was equal to zero. This is a near-impossible 
standard to meet with a baseline of only 5 crimes in the 
treated area. In that case one would need some combina-
tion of eliminating nearly all of the crimes in the treated 
and displacement areas and/or increases of crimes in the 
control areas to actually conclude that a statistically sig-
nificant crime reduction took place. In the case of low 
base rates of crime, it will be rare to find strong evidence 
of crime reductions using the WDD statistic.

Table  4 displays a set of recommendations, relating 
one-tailed p-values to general strength of evidence con-
cerning a crime reduction. ZWDD values under − 1.3 (a 
one-tailed p-value of 0.1) provide weak evidence of crime 
reduction benefits to the intervention, with stronger evi-
dence as one obtains lower values of Z. Z values over 
− 1.3 but below zero are additionally evidence of crime 
reductions, but could occur frequently by chance even if 
the intervention had no effect on crime. Note that these 
are intended to be general guidelines to crime analysts 
and police practitioners, many of whom have little for-
mal training in statistics. While one could argue about 
the labels or the thresholds used to assign different levels 
of evidence, the overall goal is to take into account that a 
small negative WDD can simply occur by chance, and so 
one needs to assess both the size of that reduction as well 
as the expected error.

Aggregating up more crimes makes the potential to 
identify a statistically significant crime reduction more 
realistic. Figure  1 displays a set of curves that show the 
necessary crime reductions needed given a particular 
average number of crimes within each of the treated, dis-
placement, and matched control areas. For example, at 

an average of 100 crimes in each area, one needs to have 
a WDD of around 30 crimes to show weak evidence of 
effectiveness (those 30 crime reductions can count as a 
combination of the treatment area as well as diffusion of 
benefits in the displacement area). To obtain a one-tailed 
p-value of less than 0.05 it would take 40 or more crimes 
reduced. To reach the strong and very strong thresholds 
takes 57 and 76 crimes respectively. This is again a diffi-
cult standard even with a baseline of 100 crimes, as many 
interventions cannot be reasonably expected to reduce 
100% of targeted crimes, and can only hope to reduce a 
sizable fraction in the best case scenario.

Because of this low power, one should keep in mind 
that failing to reject the null is not necessarily disposi-
tive that the intervention was a failure. It could be the 
intervention is effective, it just does not prevent enough 
crimes to detect in the limited pre/post sample. Collect-
ing more data over time, or expanding the intervention to 
additional areas, one might be able to identify reductions 
that appear to be larger than one would expect by chance.

Choosing reasonable control and displacement areas
One important distinction between the WDD and the 
WDQ is that the control areas for both the treated and 
the displacement areas should be comparable in terms of 
the linear differences in crime counts over time. As such, 
it is important for the control areas to have similar counts 
of crime to the treated and displacement areas, a require-
ment that is not as strict for the WDQ.

For a simple example of where a control area would 
not appear to be reasonable is if crime decreased in the 
treated area from 100 to 90, and crime decreased in the 
control area from 10 to 9. Ignoring the displacement 
areas, although each area decreased a comparable pro-
portion of crimes, this would result in a WDD statistic of 
− 9.

A general way to understand this assumption is that if 
the treatment area decreased by n crimes (without any 
intervention), would it be reasonable for the control area 
to also decrease by n crimes? With the control area hav-
ing so few crimes to begin with, this assumption (going 
from 10 to 0) seems unlikely. But if one were starting 
from a baseline of 60 crimes, going from 60 to 50 is more 
plausible.

This would suggest generally that reasonable control 
areas will have similar counts of crime compared to the 
treatment area. Preferably control areas would also be 
close to equal in geographic size as the treated area, 
although if the treatment is focused on a hot spot of 
crime for smaller jurisdictions that only have one hot 
spot this may not be feasible. But this is not an abso-
lute requirement though—the control areas merely 
need to follow the same linear trends over time as the 

Table 4  Recommendations for assessing evidence of crime 
reduction

ZWDD Strength of evidence One tailed 
p-value

− 1.3 Weak evidence of reduction 0.1

− 1.6 Evidence of reduction 0.05

− 2.3 Strong evidence of reduction 0.01

− 3.1 Very strong evidence of reduction 0.001
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treatment area, which is likely to occur even if a control 
area is not a hot spot of crime. For example several long 
term evaluations of crime at micro places have shown 
that places with lower overall counts of crime tend to 
follow the same trajectory of crime decreases over time 
(Curman et  al. 2015; Wheeler et  al. 2016). In those 
cases, choosing several places in lower level trajectory 
groups to act as a control area for a high crime trajec-
tory group location would be reasonable.

This also suggests displacement areas should have 
similar counts of crime compared to the treated/con-
trol areas if possible. While this is not necessary for 
the test statistic to behave appropriately as illustrated 
in the prior simulations, if one includes displacement 
areas that have substantially larger crime counts than 
the treated/control areas one will needlessly increase 
the variance of the test statistic, making it more diffi-
cult to detect if statistically significant crime reduction 
effects do occur. Typically one would assume displace-
ment into only similar adjacent areas (Hesseling 1994), 
but if one wants to examine displacement into wider 
areas (Telep et  al. 2014) it may make more sense to 
independently test the local and displacement effects, 
as opposed to pooling the areas into one test statistic.

With only counts of crime in the pre and post treat-
ment periods, the linear change assumption cannot be 

verified; however, this assumption can be approximately 
verified (or refuted) if the analyst has access to more his-
torical data before the treatment took place. For exam-
ple, if crime in the treated area in the three years prior to 
the intervention grew from 80 to 90 to 100, and crimes 
in the control area grew from 40 to 50 to 60, this would 
be excellent evidence that the linear differences assump-
tion is appropriate. Both series appear to be in-sync with 
one another, are subject to the same external forces that 
may influence overall crime trends, and that the linear 
changes appear to be in lockstep for each series. This 
behavior represents a realistic counterfactual condition 
that is often sought by evaluators, in that the control area 
is not only similar to the treatment area in a pre-inter-
vention cross-sectional analysis, but also longitudinally. If 
the control area however grew from 15 to 30 to 60, the 
linear changes of 10 crimes appears to be inappropriate. 
They are both trending upwards, but not in equivalent 
magnitudes.

Similarly if the control area grew from 8 to 9 to 10, the 
series are both growing, but are parallel in their ratios, 
not on a linear scale. The linear assumption can also hold 
for control areas that have higher baseline counts of the 
crime than the treated area. A control area going from 
150 to 160 to 170 would also be excellent evidence that 
the linear differences assumption is appropriate, even 

a a
Fig. 1  The standard error of the test statistic given average number of crimes per each period and within each area
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though it has a larger baseline count of crimes than the 
treated area.

Real world data are unlikely to be so convenient in veri-
fying or refuting this assumption. Say if one had a control 
area that grew from 135 to 140 to 160, would the linear 
differences assumption be appropriate? While we can-
not say for sure, one can keep in mind potential biases 
when choosing control areas. If you are choosing a con-
trol area that may change less than the treated area, in 
times of crime trending downward the intervention will 
likely appear more effective at reducing crime than it is 
in reality. If choosing a control area that may change less 
in times of crime trending upward the intervention will 
likely appear less effective than it is in reality. The obverse 
is true if choosing control areas that may change more 
than the treated and displacement areas when crime is 
trending downwards (will be more effective) or trending 
upwards (will be less effective). In times of no obvious 
trend of crime up or down, choosing control areas that 
have larger swings on average will introduce more vari-
ance in the statistic, but will not be consistently biased in 
either direction.

In the case that a single control area is reasonable as an 
overall measure of the expected crime change over time 
for both the treated and displacement areas, one can 
multiply the pre and post crime counts in the single con-
trol area by two and proceed with the statistic as usual. 
The WDD in that case would be �T − 2 ·�Ct +�D . 
This might be reasonable if the treatment and displace-
ment areas effectively cover an entire jurisdiction, have 
similar overall counts of crime, and control areas need 
to be drawn from a single neighboring jurisdiction. For 
all of these statistics, we recommend full and transparent 
disclosure of all the original counts (in addition to the dif-
ferences over time) so that readers are able to appreciate 
any nuances in the data picture for all areas under exami-
nation, and factor this understanding into their interpre-
tation of the study.

Conclusion and limitations
This essay provides a simple metric that analysts may 
use to evaluate place-based crime reduction interven-
tions, while also providing an estimate of the standard 
error of that statistic. Prior work has shown that simple 
normal sample approximations have worked well when 
assessing the changes in two Poisson means (Detre and 
White 1970; Ractliffe 1964), and the simulations in this 
work also provide evidence that the test closely approxi-
mates the hypothetical standard normal distribution. 
This allows one to estimate the statistical significance of 
the intervention, as well as calculate confidence intervals 
around the effect estimate.

The biggest limitation of the current proposed test 
is that the control area needs to have relatively similar 
counts of crime that follow the same trends as the treated 
area for the WDD to be reasonable. The original WDQ 
was constructed to be more flexible because many times 
the treated and control areas could be different in their 
overall crime. Bowers and Johnson (2003) explicitly cre-
ated a metric that would take into account those relative 
changes. Creating that relative metric though, through its 
use of ratios as opposed to differences, makes it impos-
sible to place an estimate of the standard error around 
the WDQ given only one sample of treated, control, and 
displacement areas. While the WDD metric requires 
a compromise because the control area needs to have 
a commensurate number of crimes compared to the 
treated area to make sense, this is a step most analysts 
should attempt to adhere to when determining control 
areas when possible. If it is not the case that the control 
area has similar counts of crime or is not subject to the 
same independent influences on crime outside the scope 
of the intervention, it is questionable whether that con-
trol area is a reasonable selection to begin with.

While the proposed WDD test statistic has this addi-
tional burden of a control area for the displacement site, 
we do not believe this to be too cumbersome. Research-
ers frequently use simple buffers or adjacent locations 
as displacement areas for the treated location (Bowers 
et al. 2011a; Hesseling 1994), and that idea can be equally 
applied to create a displacement area for the control loca-
tion (assuming the control area is far enough away that 
such buffers do not overlap). Geocentric buffers are not 
unambiguously the most appropriate way to construct 
displacement areas, though they are commonly applied 
to hot spots policing interventions. It is relatively easy to 
construct example buffer areas that cannot be expected 
to capture displaced crime—such as a buffer containing 
a body of water. It will always take a set of knowledge 
about the crime process under study as well as the local 
geography to construct a reasonable displacement area 
(Brantingham and Brantingham 2003; Ratcliffe and Breen 
2011). As such, the process is no different for control area 
selection than it is for treatment area choices.

As the main motivation for proposing the test is to pro-
vide a simple tool for analysts to assess the effectiveness 
of a crime prevention intervention, it is also important 
to note that the test can easily be decomposed between 
the local effects and the spatial displacement/diffusion 
effects. Spatial displacement or diffusion of benefits are 
not inevitable in place based crime interventions (Telep 
et al. 2014). So although preferable to assess spatial dis-
placement it should not be a hurdle that ultimately 
prevents even the assessment of the local effects of the 
intervention. It is likely the case that analysts will want to 
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assess the evidence of the local and diffusion effects inde-
pendently for any intervention as well, which can easily 
be accomplished with the proposed WDD statistic.

An additional limitation of the WDD test is the power 
to identify statistically significant crime reductions. 
Although the null distribution of the test behaves appro-
priately with counts as low as five on average for each of 
the areas given our simulations, it is essentially impossi-
ble to conclude the intervention was effective when start-
ing with such small baselines. This is, however, a problem 
endemic to all micro place-based policing research (Hin-
kle et al. 2013). One solution to this problem is to aggre-
gate crimes over longer periods of time, or aggregate 
multiple treated areas.

A third limitation is the presumption that crime series 
follow a Poisson distribution. Reported crime counts 
are often over-dispersed, and often more closely follow 
a negative binomial distribution (Berk and MacDonald 
2008). This will result in underestimates of the variance 
for the WDD, and subsequently cause more extreme 
Z-scores and increase false positives (saying the interven-
tion caused crime to increase or decrease when in real-
ity it had no effect on crime). Larger crime counts tend 
to more closely follow the Poisson approximation though 
(Osgood 2000), and similar analyses of actual crime 
data have illustrated the Poisson approximation is close 
enough even with low count crime data to construct 
error estimates over time (Wheeler 2016).

While admitting the test is not perfect due to these 
limitations, we believe it is reasonable enough to use in 
practice, and is better than the alternative of analysts 
using personal judgement as to whether the intervention 
is successful, based on subjective assessments of the mag-
nitude of the changes in crime. The perfect need not be 
the enemy of the good.

In future work it is likely the case that the proposed 
test can be extended in several ways. Currently the test 
ignores the use of rates, which could be conceptual-
ized as time (e.g. having a longer pre period than post 
period), area (assessing changes in crime density per area 
as opposed to crime counts), or as rates per victimiz-
able targets (e.g. the number of residential burglaries per 
number of residences in each area). Other example tests 
of the differences in Poisson means have been adapted to 
take into account rates (Detre and White 1970; Krishna-
moorthy and Thomson 2004), and so it seems likely the 
simple test provided here can also be adapted to estimat-
ing changes in rates. Finally, it is possible that exact tests 
could be developed with more power to identify changes 
in Poisson (or negative-binomial) distributed counts 
(Krishnamoorthy and Thomson 2004). But it is likely the 
case that the suggested normal based approximations will 
always be simpler to implement in software (including in 

spreadsheets), thus making them much more accessible 
to a broader array of analysts.
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