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Abstract

A fundamental issue in crime prevention is the efficient deployment of resources and the effective targeting of
interventions, both of which require some form of prediction of future crime. One crime for which this is feasible is
burglary, the distinctive spatio-temporal signatures of which can be exploited to inform predictions. Mathematical
models in particular are capable of both encoding concisely the theoretical foundations of criminal behaviour and
allowing the quantitative analysis of specific scenarios, and their capacity to reproduce the general patterns of
burglary suggests that the approach has considerable potential. Previous models, however, are situated on simplified
representations of space and do not reflect realistically the built environment in which crime takes place; specifically,
they do not incorporate urban street networks. Such networks are fundamental to situational theories of crime, in the
sense that they determine the configuration of urban space and, therefore, shape those human activity patterns
which are thought to give rise to crime. Furthermore, streets are the natural domain for many policing activities, and
their structure is determined by planning decisions, so that insight into their relationship with crime is likely to be of
immediate practical use. With this in mind, this paper presents a mathematical model of crime which is explicitly
situated on a street network. After discussing theoretical considerations and specifying the model itself, examples of
typical networks are explored.
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Background
Residential burglary has been, and remains, a significant
criminal problem, and consequently has been the subject
of academic research for some time. As with most analyti-
cal work concerning crime, the objectives of such research
are both theoretical, in improving the understanding of
the process leading to the crime, and practical, in using
the insights gained in order to prevent future crime. With
respect to the latter, this typically entails some form of
prediction, either at the fine spatio-temporal granularity
which, for example, might be required for a strategy of
‘hotspot policing’ (Chainey and Ratcliffe 2005), or in the
more generalised terms which might be used to inform
long-term policy. Previous work has shown predictive
policing based on statistical analysis to have considerable
potential (Johnson et al. 2009a), and the desire to build
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on this is well-aligned with the desire of administrators
to carry out policing more efficiently; a principle which is
also a central theme of the field of crime science (Laycock
2005). Modelling has much to offer here, through its
ability to distil theoretical mechanisms to formal expres-
sions and to afford both quantitative and rigorous analysis
of hypothetical scenarios via well-established techniques.
Indeed, this potential, along with the increased availabil-
ity of geographical data and the development of a wide
array of tools for the analysis of complex social systems,
has inspired significant recent interest within the mod-
elling community. Within this domain, attempts to model
burglary range frommathematical approaches (Berestycki
and Nadal 2010; Pitcher 2010; Short et al. 2008) to those
employing agent-based simulation (Birks et al. 2005; Groff
2007a; Johnson 2008; Malleson et al. 2009), with these
playing complementary roles. This divergence is common
to crime modelling as a whole: although the possibility
of generalised analysis means that mathematical models
might offer greater insight, they have so far failed tomatch
agent-based approaches in terms of their scope for the

© 2013 Davies and Bishop; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.



Davies and Bishop Crime Science 2013, 2:10 Page 2 of 14
http://www.crimesciencejournal.com/content/2/1/10

incorporation of detailed individual-level behaviour, with
only some examples occupying a middle ground (Davies
et al. 2013; Short et al. 2008).

Criminological theory
In the case of mathematical approaches, much previous
work has focussed on one of two aims. The first of these is
to explore whether hypothesised mechanisms for burglary,
when encoded mathematically, are sufficient to generate
the generalised patterns observed empirically (Berestycki
and Nadal 2010; Pitcher and Johnson 2011; Short et al.
2008), and this appears to indeed be the case in simpli-
fied mathematical representations. This general approach
is also characterised by its versatility, and has been used as
a starting point for more realistic extensions, such as those
incorporating policing activity (Pitcher 2010), which lend
themselves to the exploration of simple policy questions.
On the other hand, with a view to producing effective
tools for short-term prediction, research elsewhere has
sought to make specific predictions about the location
of future risk, given a particular set of current burglary
data (Mohler 2011). Common to both approaches, how-
ever, is the intention to leverage the patterns observed
in empirical burglary data in order to make predictions.
Such patterns have been studied widely, and can gener-
ally be summarised as forms of clustering, though acting
at varying scales and dimensions. Looking first at space, it
has long been established that the locations of crimes are
clustered (Shaw and McKay 1969; Sherman et al. 1989),
and the importance of place in the study of crime has
been emphasised accordingly (Eck and Weisburd 1995).
The importance here of scale, though, is considerable,
since patterns can be subject to significant heterogene-
ity within units of analysis: previous studies have shown
area-level crime rates to be driven largely by those of
only a few streets (Weisburd et al. 2004) and burglary risk
to vary significantly between individual houses (Bowers
et al. 2005). In line with this, the importance of retaining
fine spatial granularity in crime analysis has been stressed
(Brantingham et al. 2009).
As well as a location in space, however, all crime occurs

at some point in time, and clustering is also evident here,
most obviously manifested as daily and seasonal cycles.
While valuable insight can be gained by considering this,
however, of greater interest is the interaction between
spatial and temporal dimensions; indeed, to ignore this
may lead to incomplete understanding of each individ-
ual factor. Studies have consistently demonstrated that
crime clusters in both space and time (Grubesic andMack
2008; Johnson et al. 2007; Townsley et al. 2003); that is,
that the clustering is greater than would be expected if
it were simply occurring independently in each dimen-
sion. In the case of burglary, this is exemplified by the
phenomenon of repeat victimisation, whereby victimised

properties, for a period after the initial event, are sub-
ject to a rate of further victimisation over and above
that which would be expected by chance (Farrell 2005).
Indeed, the temporal component of this is particularly
distinct, with risk appearing to decay exponentially with
time after an initial event (Johnson et al. 1997). In addi-
tion, the concept can be extended to that of near-repeats
(Morgan 2001), whereby properties close to an initial
event also experience elevated risk for some period
afterwards. These phenomena, which represent the pri-
mary drivers of burglary hotspots in urban environments,
appear to be ubiquitous in data from several countries
(Johnson et al. 2007; Townsley et al. 2003).
The near-repeat patterns observed empirically imply

that burglary victimisation cannot be understood by con-
sidering properties in isolation, and that they must instead
be considered in the context of their wider neighbour-
hood. In trying to account for repeat victimisation, much
attention has focussed on two (non-mutually-exclusive)
hypotheses, both of which seek to provide explanations
based on factors acting at the level of individual proper-
ties. The first of these is the concept of risk heterogeneity,
also known as the flag hypothesis, which suggests that
patterns may arise due to differences in the time-stable
risk of burglary at individual properties (Pease 1998). This
‘risk’ refers to any non-varying factor which may influ-
ence the probability of victimisation, such as the type of
property, presence of security features, affluence or loca-
tion. That repeat victimisation might arise from this can
be understood by a simple statistical argument: even if
burglaries occurred randomly, some repeat victimisation
would occur by chance, and the fact that some prop-
erties are more attractive than others simply biases this
process. The preferential victimisation of more attractive
properties necessarily implies that the time between their
victimisations will be shorter, and that more repeats will
therefore occur on this basis. This can be extended easily
to near-repeats by considering that nearby properties are
likely to be of similar attractiveness.
The other explanation which is typically invoked is the

boost hypothesis, which states that, for some period after
an initial event, the risk to nearby properties is temporar-
ily elevated (Pease 1998). The natural explanation for this
is that any repeat offence is likely to be the work of the
same offender (since it is unlikely that another offender
would have knowledge of the first incident). The rea-
son for the elevation can be understood by considering
the decision process of a rational offender (Cornish and
Clarke 1986): the commission of the first offence affords
knowledge of both how to successfully burgle the prop-
erty and the potential rewards available, making it a more
attractive proposition than an ‘unknown quantity’ when
identifying a future target. This is lent further credence by
interviews with offenders (Ashton et al. 1998; Cromwell
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et al. 1991; Summers et al. 2010) and police detection data
(Bernasco 2008; Johnson et al. 2009b), both of which sup-
port the identification of repeat incidents with the same
offender. Again, this idea is easily extended to near-repeat
victimisation: knowledge of one house is likely to offer
insight into the characteristics of its neighbours (such
as the layout and location) and, furthermore, the jour-
ney to and from the initial crime affords an opportunity
to evaluate nearby properties. The question of the rela-
tive strength of these effects - flag and boost - has been
considered in recent work using both simulation-based
(Johnson et al. 2009b) and statistical approaches (Short
et al. 2009), in which evidence was found in support of
both hypotheses.
Both of these arguments can be cast in the light of

more general theories of ‘environmental criminology’
(Brantingham and Brantingham 1981); an approach which
focuses explicitly on the criminal act itself, and the cir-
cumstances which give rise to it, rather than the charac-
teristics of the offender. Central to this is ‘routine activity
theory’, which builds on simple observations regarding
the conditions under which a crime takes place. A fun-
damental idea is that a crime can only occur under the
convergence in space-time of three factors - a motivated
offender, a suitable target, and the absence of a capa-
ble guardian (Cohen and Felson 1979) - and the ques-
tion therefore naturally shifts to how such a concurrence
might arise in a realistic setting. A popular explanation
is built on the hypothesis that the majority of crime is
essentially opportunistic; that offenders encounter targets
whilst going about non-criminal activities and that crime
patterns are simply a manifestation of heterogeneities in
this target awareness. Conditions suitable for crime might
therefore be best conceptualised as a result of the cumu-
lative activity patterns of the public.
Building on this, ‘pattern theory’ (Brantingham and

Brantingham 1993a) seeks to add more detailed geo-
graphic considerations to these explanations. It is based
on the idea of situating the above concepts in a real-
istic urban environment, considering both how activity
patterns are shaped by the configuration of space (i.e.
the ‘urban form’) and how the physical characteristics of
certain areas can influence the decisions of a potential
offender. The term ‘urban backcloth’ is used in this con-
text to refer to the layout of the built environment, with
particular emphasis on those elements which relate to
common activities (e.g. homes and workplaces), and the
inferred activity patterns can then be reconciled with lev-
els and types of criminality. Going further, and somewhat
anticipating the use of network theory in crime analy-
sis, the notions of “nodes, paths and edges” (Brantingham
and Brantingham 1993b) are introduced as a means of
encoding the urban backcloth and the significant features
within it.

The role of the street network
The definition of the urban backcloth as the configuration
of urban space immediately invites consideration of the
street network, since this is the primary means by which
towns and cities are arranged. Perhaps due to a lack of
suitable geographical data, though, little work has sought
to compare crime levels with features of the street net-
work. Early work took a coarse-grained approach, com-
paring crime levels at the area level with street network
density and finding a positive relationship with burglary
risk (Bevis and Nutter 1977). Moving to a more local level,
later research used the street segment as the unit of anal-
ysis, classifying each according to the number of roads
which connected to it directly and using the road type as
a proxy for its ‘flow’ (Beavon et al. 1994). These factors
both showed a positive relationship with crime, support-
ing the theory that more permeable roads were at greater
risk (Newman 1972).
The distribution of crime has also been considered in

the context of the more general concept of ‘space syn-
tax’; an approach which has been applied in a variety
of urban contexts and one which has been influential
in arguing for the importance of incorporating street
network constraints in urban-level social models. The
approach itself is characterised by the principle that indi-
vidual street segments cannot properly be understood
in isolation, but must be considered in the context of
the rest of the network and their position within it. In
addition, the role of sight-lines in governing connectivity
is emphasised, and indeed these are used in the def-
inition of street segments themselves. Several metrics
have been developed using these ideas, such as inte-
gration, which measures how close a given location is
to all others in terms of paths through the network.
Applying these methods to crime, and analysing data
from urban areas in the UK and Australia, Hillier (2008)
found that crime was positively related to connectiv-
ity but negatively related to integration. The conclusions
drawn from this contradict the previous work, suggest-
ing that permeable designs are favourable, but that where
redundant connectivity is present (that which does not
increase integration) the effect can be reversed, per-
haps because of the provision of extra entry or escape
routes.
Hillier’s work also includes observations at the level of

individual properties, in particular relating to modes of
access (e.g. proximity to alleys). These are also consid-
ered by Armitage (2007), whose work involved detailed
assessment of the physical features of individual houses.
These observations included the type of road on which
the property was situated and a subjective estimate of its
usage, both of which were then individually compared
with crime levels. In this case it was found that increased
activity and permeability was associated with higher risk,
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with the difference between isolated cul-de-sacs and those
serviced by pedestrian alleys being a notable example.
Most recently, a more nuanced approach, employing

a multi-level statistical approach to account for spatial
nesting in the data, again found a positive relationship
between permeability and burglary risk (Johnson and
Bowers 2010). In that study, the permeability of roads was
evaluated either by the Ordnance Survey classification
(a categorical factor, e.g. ‘Minor Road’, ‘B Road’) or by the
number of roads to which they connected, and cul-de-
sacs were treated as a special case and identified manually.
The study found a steady increase in effect when moving
through the hierarchy fromminor roads to major, and also
a notable finding that cul-de-sacs in particular were found
to be at significantly lower risk.
As well as simply explaining some variation in crime

rates, it has also been suggested by Johnson and Bowers
(2007) that street networks may play a role in the spread
of crime risk. Particularly considering the movements of
offenders, and the hypothesised role of awareness spaces
in repeat victimisation, it is suggested that networks are a
natural substrate for such diffusion processes.
Recent advances in geographical information systems

have, one one hand, facilitated modelling approaches
which explicitly incorporate network data (Groff 2007b),
but have also been accompanied by the development of
the field of network science, which uses ideas from graph
theory to facilitate sophisticated analysis of real-world
networks (Newman 2010). The study of spatial networks,
defined as those whose features are embedded in space in
some sense, is a particularly active sub-field (Barthélemy
2011) and includes the study of various properties of street
networks (Porta et al. 2006a; 2006b). In order to discuss
relevant results of this research, we first introduce some
graph-theoretical terminology.

Themathematics of networks
Networks, to the extent that they will be used in this paper,
are relatively simplemathematical objects andmany of the
concepts used in their analysis are formalisations of intu-
itive ideas. In the most basic terms, they are collections of
points and lines, where each line connects a pair of points,
and typical analysis is no more complicated than con-
sidering how the network can be traversed by travelling
along lines. To facilitate mathematical analysis, though, it
is helpful to define these concepts symbolically.
A network (or graph)G = (V ,E) is a collection of nodes,

V, and links, E (also referred to as edges within graph
theory). The set of nodes,V = {v}, is a non-empty set ofN
elements, and E = {e} is a set ofM elements, each of which
is an unordered pair of nodes. The nodes are labelled using
the integers 1, . . . ,N , where the order is unimportant as
long as the labelling is consistent and unique, and each
node is then referred to by its label. Where a link exists

between two nodes i and j, the nodes are said to be adja-
cent and the link is therefore represented by the unordered
pair of nodes (i, j). The information necessary to describe
all such links in a network can be encoded as an adjacency
matrix A, an N × N matrix such that

aij=
{
1 if (i, j)∈ E (i.e. there is an edge connecting i and j)
0 otherwise,

(1)

where, for clarity, the symbol ∈ denotes ‘is a member of ’.
Various simple quantities can be defined for a node i, such
as the degree ki, which is the number of other nodes to
which it is adjacent (i.e. the number of links connected to it);
it is straightforward to see that this is equal to

∑
j aij.

A path in a network is any ordered sequence of nodes
such that every consecutive pair of nodes is connected by
a link (that is, a sequence of nodes which can be traversed
by following links). The length l of such a path can be
defined as the number of links which feature in it (which
is 1 fewer than the number of nodes in the path). For any
pair of nodes i, j ∈ V it can be determined whether a path
between the two exists, and indeed there may be more
than one such path. A shortest path between i and j is
one of these such paths of minimal length (though, again,
there may bemore than one such if several alternatives are
equally short).
Paths can be used to calculate measures of the ‘central-

ity’ of elements of the network, in various senses, and we
introduce one such here. Betweenness centrality is a mea-
sure which seeks to quantify how regularly individual links
are used during journeys through the network. Although
we will formally define it below, its meaning can be most
intuitively understood by describing how it is calculated.
The main steps involved are:

1) initialise all links with a betweenness centrality of 0;
2) consider all pairs of nodes i and j ;
3) for each pair i and j, find the shortest path(s)

between them;
4) for every link that appears in the shortest path(s),

increment its betweenness centrality by 1
w , where w

is the number of shortest paths between i and j (so if
there is only one shortest path between i and j, add 1
to the centrality of each segment in it).

Effectively, then, betweenness counts the number of times
that each link is traversed, assuming that one shortest-
path journey occurs between all possible pairs of nodes
on the network. This can be regarded as a well-motivated
proxy for the likely level of usage of each link when
journeys are occurring on a network.
More formally, if we define σij as the total number of

shortest paths between i and j, and then, more particularly,
σij(e) as the total number of shortest paths between i and j
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which pass through the link e ∈ E, we can define the
betweenness centrality Cb

e of a given link e as:

Cb
e =

∑
i,j∈V ,i∼j

σij(e)
σij

(2)

where ∼ here represents the relation ‘there exists a path
between i and j’. The value can then be normalised by
dividing by N(N−1)

2 (the maximum possible value) in order
to allow comparison between networks. Figure 1 gives
a stylised example of a network for which betweenness
can be used to discriminate between the roles of differ-
ent links; it can be seen how the value changes between
‘central’ links and those on the periphery.
In order to use such ideas on street networks, we must

first establish how they can be represented as graphs.
There are several methods for this, with varying theo-
retical and mathematical implications, and the choice is
dependent on the task in hand. One well-developed
method, for example, represents whole roads (sets of
street links which have been associated on the basis of
street name or geometry) as nodes, and places links
between any two which share a junction (Jiang and
Claramunt 2004; Porta et al. 2006a). While the process
of associating streets is useful and realistic, it can place
unduly high emphasis on the importance of street name,
and also leads to large variation in the physical length
of streets. Perhaps a more natural choice, and the one
we adopt here, is commonly known as the ‘primal’ rep-
resentation (Porta et al. 2006b). In this, nodes are taken
to represent the intersections between streets, and links
represent the sections of streets which connect the inter-
sections (each of these sections is referred to as a street
segment, so that two nodes are connected if there is a
street segment between them). An example of this can be
seen in Figure 2.
Using this representation, it is possible to calculate

betweenness values for each segment in a road network,
and these values can also be seen in Figure 2f. The high-
est values are seen to occur on main thoroughfares, which
would be expected to see the greatest use. As has been

pointed out elsewhere (Porta et al. 2006a), it is worth
noting at this stage that betweenness is susceptible to
‘edge effects’: that is, the measured betweenness for seg-
ments towards the periphery of the study area is artificially
low, since the starting points of many paths which would
use such a segment are not included. This is unavoidable
since the network considered must be geographically lim-
ited, but the problem can be ameliorated by establishing
a ‘buffer zone’ at the extremes of the network for the pur-
pose of betweenness calculation, which is then discounted
in any following analysis.
This technical perspective on the study of street net-

works has developed rapidly in recent years (Crucitti
et al. 2006), and the values of various measures of cen-
trality (including betweenness) observed for many real-
world networks have been well-studied. The concept
of centrality can be defined in several well-motivated
ways (concerning, for example, either the accessibility of
places or their closeness to others) and particular metrics
have been proposed to emphasise different perspectives.
Building on these, the technique of ‘Multiple Centrality
Assessment’ has been developed by Porta et al. (2006a) as
a method of combining several complementary metrics in
order to give an overall measure of the centrality of parts
of a street network. Taking this to the natural next step,
and of particular relevance for this work, the same authors
then sought to establish the relationship between these
measurements and urban activities, looking specifically at
the densities of retail and service premises in Bologna,
Italy (Porta et al. 2009) and Barcelona, Spain (Porta et al.
2012). In both cases, a positive relationship was found
between economic activity and street centrality, and such
results suggest that the use of metrics such as these to
predict urban activity is likely to be fruitful.
The purpose of this paper is therefore to propose an

explicitly mathematical model (that is, based on differ-
ential equations) for burglary, situated on a network.
After describing this model, we provide examples of its
behaviour on realistic networks under various scenar-
ios, corresponding to potential real-world uses or policy
interventions. With a model such as this, interest is both

Figure 1 Simple illustration of betweenness. Link e1 = (i1, j1) (shown red) features in any path between a node on the ‘left’ of the network (there
are 6) and a node on the ‘right’ (of which there are 5) and therefore has a relatively high betweenness value of 60. Link e2 = (i2, j2) (blue), on the
other hand, is only traversed by paths starting or ending at j2; there are 20 such paths and it therefore has a relatively low betweenness value of 20.
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Figure 2 The construction and analysis of the ‘primal’ representation of a street network. This example shows a section of the network of
Toulouse, France: a) the original street network map, as obtained from OpenStreetMap.org, b) nodes placed at every intersection between streets,
c) links added between any pair of intersections which are connected by a street segment, d)map zoomed to the section highlighted in red in (c),
e) backgroundmap image removed to isolate network structure, and f) links coloured according to betweenness (where blue is low and red is high).

theoretical and practical, necessitating different types of
analysis. On the theoretical side, we aim to generate
known generic patterns of crime, but the rare nature of
burglary events (and multitude of factors not considered)
also means that a comprehensive model may not be a
sensible goal. From a practical perspective, however, the
question of the risk diffusion patterns associated with
individual shocks (i.e. burglary events) is likely to vary
according to network structure and is of clear practical
interest. By considering the qualitative behaviour of the
model under both these motivating cases, we demonstrate
the importance of considering the street network explic-
itly in crime modelling, and the significant effect which
such consideration has on results.

Methods
Street network data
Street network datahas been obtained fromOpenStreetMap.org,
a collaborative open-source mapping project. The data
provide information relating to all roadways in a given
area (according to a broad definition, which includes

footpaths and private access roads, for example) and var-
ious levels of information about each, such as the road’s
name, type and how it is used. An exported file is pro-
cessed in order to arrive at the primal graph represen-
tation, and cleaned in order to remove features, such as
roundabouts, which might distort analysis.

Model specification
In previous attempts to model burglary mathematically,
the fundamental spatial unit has been taken notionally
to be the individual property, the implication therefore
being that risk diffuses from house to house via inter-
mediate properties. Here we use a coarser scale and take
the street segment as the basic unit, considering therefore
only segment-to-segment diffusion, and this is done for
several reasons. Firstly, this is a scale at which real-world
burglary data is widely available, and is also the scale at
which potential police interventions (e.g. patrolling) are
likely to be implemented. In addition, the determination
of insurance premiums - which this model might also help
to inform - is often based on postal codes, which typically

http://OpenStreetMap.org
http://OpenStreetMap.org
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correspond to street segments; this is the case in the UK,
for example. From amore practical mathematical perspec-
tive, the street segment is a suitable unit since it is at that
scale that the majority of variation in centrality indices,
such as betweenness, takes place. If the individual prop-
erty was used instead, all properties on a given segment
would have exactly the same betweenness value: values are
based on journeys, and for two adjacent properties on a
given segment, the journeys which pass one property are
exactly those which pass its neighbour. Individual prop-
erties are therefore indistinguishable on that basis, and so
their inclusion represents unnecessary redundancy in the
present setting.
The model is therefore defined on a network G =

(V ,E), constructed as described in the previous section,
so that each link represents a street segment. For conve-
nience, we introduce an indexing e1, . . . , eM of the links
and also define the matrix A′ = (a′

ij), where

a′
ij =

{
1 if ei, ej ∈ E share a common node v ∈ V
0 otherwise.

(3)

This matrix therefore encodes the structure of the net-
work in terms of which pairs of links are coincident; in
fact, it is just the adjacency matrix of the ‘line graph’ of
G, in which the roles of nodes and edges are inverted (as
described by Diestel 2010). As such, it does not intro-
duce any further statistical properties beyond those of
G itself, but simply allows for brevity in mathematical
representations.
We model burglary risk Ri(t) at time t for each link ei

of G, and this quantity represents our main dependent
variable. Specifically, it is the rate of burglary at the given
point in space and time. Each link ei can also be assigned
a priori two values: a fundamental basic attractiveness Bi
(summarising static features likely to have an influence on
burglary, such as security and affluence) and a centrality
measure Ci (such as betweenness) determined by the net-
work structure. The notion of centrality is intended to be a
broad one, and refers to the extent to which a given street
features in activity patterns. Many such measures could
be used within this framework; for the sake of concrete-
ness when considering the model, it can be thought of as
betweenness.
Inspired by Short et al. (2008), we take the burglary rate

on a link to be composed of two parts: a static component
Si and a dynamic component Qi(t):

Ri(t) = Si + Qi(t) (4)

Regarding the static rate, for the purposes of this model
we regard this as being dominated by opportunistic bur-
glary and therefore driven by a combination of activity
patterns and target attractiveness. At the time scale we

consider - that over which repeat victimisation effects are
seen - both activity and attractiveness can be taken to be
constant (though spatially varying).
To calculate the static rate Si, we require an estimate

of the level of movement activity Wi on a link ei, and
the probability pi that an opportunist offender would vic-
timise the link in a given time unit, were they to be
present. Criminological theory implies that the means by
which the network will influence crime patterns is by
shaping the activity patterns of individuals. In contrast
to the random walk assumption used in previous work,
this assumes that people are taking specific trips, between
home and work for example, and that patterns are driven
by the accumulation of these trips. One approach to mod-
elling this might therefore be to expect that such patterns
at segment level are revealed as emergent properties of
offender behaviour, but including this is clearly very chal-
lenging in a simple mathematical framework (as opposed
to within, say, an agent-based model).
The notion of betweenness, however, whilst typically

thought of purely as defining a graph metric, could in fact
be regarded as a model of sorts for the throughput of a
segment when traffic is flowing on the equivalent street
network. In this light, its direct inclusion in the model
is not necessarily artificial, but rather represents a sub-
model of typical pedestrian behaviour. For our measure
of activity, therefore, we use some function f of cen-
trality (the value itself could be used, but Wi may need
to be a modified/smoothed quantity due to the inherent
non-linearity of betweenness); thus

Wi = f (Ci). (5)

Turning to the probability of offending, we model this as a
Poisson process (a series of events occurring probabilisti-
cally in continuous time), the rate of which is determined
by the basic attractiveness Bi defined previously, imply-
ing a series of independent offender decisions based on
the underlying attractiveness. Accordingly, the probability
within a given time period [t, t + δt) is

pi = 1 − e−Biδt . (6)

Leaving aside the precise form of this relationship, the key
point is that an increase in the attractiveness Bi will raise
the probability of an offence: the exponential term e−Biδt

decreases, and pi becomes closer to 1 (which corresponds
to the offence occurring with certainty).
To account for the fact that not all patterns of offend-

ing (and activity) will be accounted for by street network
properties, we also include a constant background rate
of activity, Di, to encapsulate other constant factors not
directly related to the network. We therefore have:

Si = (Di + Wi)pi, (7)
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Turning now to the dynamic component of risk Qi(t),
this term is intended to encapsulate ‘boost’ effects; that is,
those acting locally and at short time scales in response to
previous victimisations. This value, for a given link, will
again be composed of several parts: that which is due to
‘new’ offending taking place; remaining boosts from ear-
lier time; and boost effects acquired from neighbouring
locations. For the first term - new offending - the boost
will simply be proportional to the offending rate Ri(t) on
the link, according to some boost parameter � which sim-
ply determines the magnitude of the effect. The latter two
of the three terms have previously been modelled as a dif-
fusion process with decay (Short et al. 2008), and are done
so again here. These can be put together to form a differ-
ential equation - an equation for the rate of change of Qi
with time, denoted dQi

dt - thus:

dQi
dt

= �Ri − ωQi + η
∑
j
a′
ij(Qj − Qi) (8)

where ω is a decay parameter, η a coefficient of diffusion
and the a′

ij in the summation are elements of A′. On the
right hand side, the first term �Ri represents the increase
in proportion to new offending, and −ωQi determines
thatQi decays in proportion to its present value. The latter
term represents diffusion from link to link whenever both
meet at a common node (recalling that a′

ij = 1 if and only
if i and j are coincident). Specifically, it encodes the idea
that risk will flow from higher- to lower-risk segments: if
segment i has a neighbour j which is at higher risk (i.e.
Qj > Qi), the term a′

ij(Qj−Qi)will be positive and drive an
increase in Qi. The summation simply averages this effect
over all neighbours.
Naturally, Ri can be re-written as (Si+Qi), and Si in turn

as (Di+Wi)pi, so that we have a single dynamical equation
for Qi:

dQi
dt

= �((Di+Wi)pi+Qi)−ωQi+η
∑
j
a′
ij(Qj − Qi).

(9)

Such a differential equation can be used to carry out
numerical simulations, and the results of several of these
will be shown in the following sections. To perform these,
the differential equation is repeatedly applied at regular
discrete time-steps, with parameters as specified in figure
captions in each case. Unless otherwise specified, street
network data from Toulouse, France, is used as the spatial
setting, as depicted in Figure 2. For each link, the equation
for the rate of change, when coupled with the initial con-
dition, is sufficient to determine the state of the system at
all subsequent times.

Results and discussion
Response to burglary events
In the above formulation, risk is modelled as increasing
according to current levels of offending via the ‘boost’
term with parameter �. The purpose of this is to rep-
resent an evolving system with ongoing offending and
ultimately to find persistent patterns of crime; however,
also of interest in this scenario is the question of how
the risk associated with known, exogenous offending will
evolve over a short timescale. One way of examining this is
to consider the response to a hypothetical burglary event
occurring at a particular location, in the absence of fur-
ther offending. Removing the boost term from the model
(or, indeed, setting � = 0) and setting initial conditions
to represent some state of the system, we can see how the
patterns of risk would evolve. The diffusion-decay model
in this case is simply

dQi
dt

= −ωQi + η
∑
j
a′
ij(Qj − Qi). (10)

Figure 3 shows the diffusion of risk after the system has
been perturbed in a single location (representing a bur-
glary event). Although this has little to offer in terms of
providing an explanation for hotspot formation, it demon-
strates the potential use of a model such as this as a
predictive tool: given a recent pattern of offending, a
quantitative indication of the local change in risk owing to
that offending can be found. In this case, we can see the
risk ensuing from a single victimisation.
It is notable that when a relatively non-central segment

is victimised in Figure 3a, the spread is localised and one-
directional, whereas risk spreads in a much more diverse
manner when a highly central segment is victimised in
Figure 3b. It can also be seen that, when segments are
far apart in terms of network distance, there is negligi-
ble spread of risk from one to the other, even if they are
close in purely spatial terms; this is contrary to what is
predicted by models which do not incorporate the street
network, and arises simply because risk is constrained to
spread only along links. This demonstrates a fundamen-
tal sense in which this model differs from those proposed
previously.

Modelling dynamic burglary events
We nowmove on to investigate numerically the behaviour
of the system when levels of offending feed back into the
system; that is, when crime is not taken as an exogenous
initial condition, but the ongoing offending originates
from within the model itself. We therefore consider the
case where � �= 0.
The long-term behaviour of the model under a relatively

simple formulation is shown in Figure 4. In this simula-
tion, the static attractiveness S of each street segment (i.e.
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Figure 3 Examples of the diffusion of crime risk on a typical section of street network in response to burglary events. The system is
perturbed by artificially raising the burglary risk Qi on one segment: each set of frames (a) and (b) shows the network, coloured according to Q, in
the original configuration, followed by the situation at the time of the burglary and two further snapshots at later times. The parameter values used
here are η = 0.4,� = 0.5 and ω = 0.7, and the value of δt used in the simulations is 0.01.

each link in the network) is taken to be directly propor-
tional to its betweenness centrality Cb, in line with the
reasoning outlined previously. It is also assumed that the
basic attractiveness of street segments, B, is uniform but
non-negative across the system, and the background rate
D is taken to be 0 everywhere, in order to concentrate on
repeat-victimisation effects. In addition, the system is ini-
tialised with a uniform initial condition of 0 for Q. With
initial values chosen in this way, and for suitable values of
the other parameters, it is seen numerically that the sys-
tem tends towards an equilibrium (in that the value for
each link reaches a steady state), with the final state shown
in the final frame of Figure 4. The fact that equilibrium is
reached implies that, for the parameters chosen, the final

configuration shown is a sustainable pattern for the long-
term distribution of crime; the value for each link is its
long-term rate of crime.
Although comparison with Figure 2f shows that the

links with highest value of Q are, as expected, those with
highest betweenness centrality Cb, it is also seen that it
is not the case that there is a direct relationship between
the two. This can be seen more explicitly in Figure 5, in
which betweenness values are plotted against the equilib-
rium values of risk. Behaviour of this form suggests that
the diffusive pattern adds structure to the crime patterns,
even in steady state, over and above that which would be
predicted purely on the basis of the betweenness-based
static risk (in which case a straight line would be expected

Figure 4 The evolution of the system towards equilibriumwhen the static risk is taken to be proportional to betweenness. The parameter
values are η = 0.4,� = 0.5 and ω = 0.7, and the value of δt used in the simulations is 0.01.
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Figure 5 The relationship between centrality and burglary risk. This shows a scatter plot of betweenness values against equilibrium values of Q
for the simulation depicted in Figure 4. Each point corresponds to a link in the network.

in Figure 5). Indeed, streets must be considered explicitly
in the context of those around them and in the con-
text of the urban space as a whole. In the configuration
shown, because of heterogeneities in the way the net-
work is connected, the underlying risk is ‘smoothed’ in the
equilibrium.

Modelling policing interventions
A natural progression from the study of the long-term
emergence of crime patterns is to consider how these
react when the system is manipulated; considering this
as a manifestation of a real-world intervention, this is of
immediate relevance to policy. A natural intervention to
study is the activity of police, via patrolling or otherwise,
which is intended to have the direct effect of reducing
crime in the area in which it is employed. To this end, we
investigate the numerical behaviour of the model under
such an intervention.

Modelling the effect of police activity in the simplest
way possible - by artificially lowering the crime rate to
zero on a chosen street segment - we can examine the
effect on the long-term behaviour of the system. Figure 6
shows such a simulation, where the street segment with
highest betweenness has been selected for intervention.
From the colouring it can be seen that the risk has been
reduced not only on the segment with intervention, but
on other segments also. Moreover, it is apparent that the
reduction on nearby segments is not simply a function of
their distance from the chosen segment; again, the com-
plexity of the network structure has caused effects which
are non-linear in this sense. Figure 7 shows the ratio of
post- to pre-suppressionQ for segments according to their
distance from the intervention, and it can be seen that
there is considerable variance within groups: even among
direct neighbours, the reduction is more pronounced in
some than others. This again emphasises the way in which

Figure 6 The evolution of the systemwhen crime risk is artificially suppressed on one segment. The suppression is achieved by holding the
value Q at 0 on e for the duration of the simulations, with all other aspects of the model unchanged. Segments are coloured according to Q, the
parameter values here are η = 0.4,� = 0.5 and ω = 0.7, and the value of δt used in the simulations is 0.01.
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Figure 7 Variation in the effect of suppression. The graph shows the magnitude of reduction of Q on nearby segments resulting from the
artificial suppression of crime on the link with highest betweenness, as shown in Figure 6. Values show the ratio of Q after suppression to that in its
absence, and are grouped according to the distance of the segment in question from the directly-affected segment, e.

interventions must be considered in their proper spatial
context, and is encouraging since it suggests that informed
placement has the potential to compound the positive
effect of policing.

Modification of urban form
In addition to short-term interventions such as policing,
one of the potential outcomes of analysing urban crime is
to inform decisions taken by planners in relation to urban
design. This might take the form of developing heuristics
for future planning projects, but there is also the possi-
bility to modify existing structures in order to address a
crime problem.
With this in mind, we address such a possibility; specif-

ically, modification of the street network by removal of
a certain link. This removal could represent the blocking
of that segment or, equivalently, the state of the network
if that segment had never originally been constructed. A
natural choice for such an intervention, given the role of
network centrality in the model as a driver of crime, is
the segment with highest betweenness, and the removal
of this segment for Toulouse is illustrated in Figure 8.
In Figure 9, we show the evolution of the system after

the removal of this link from the original network. Once
again, we initialise Q as zero on every link and allow the
system to reach equilibrium. It can be seen that, relative
to the example in Figure 4, burglary activity is displaced in
an unanticipated way; the peak which was previously seen
on the removed segment has not simply moved to neigh-
bouring segments, but has appeared several segments
away. The fact that such a central link has been removed
means that its role in the network must be assumed by
other links: in terms of betweenness, many paths passed
through the deleted link andmust be re-routed, with these
routes possibly being quite distinct from the originals (in
terms of the number of links shared by both the original
and re-routed paths). This can cause a dramatic change

in the betweenness of other links, perhaps several degrees
of separation away, and this effect is seen in the changed
pattern of crime in Figure 9, where the main ‘hot spot’ of
criminal activity has moved to the upper left of the map.

Variation between networks
The structure of street networks can vary widely both
within urban areas and, at a larger scale, between cities
and countries. Depending on its intended use, and on the
dominant planning practices at the time of construction,
the properties of networks can be measurably different.
Given that our model is based partially on street-level
metrics, such variation will clearly influence results. As
well of being of theoretical interest, it also means that the
model may have different implications according to local
circumstances.
Figure 10 shows results for a section of the street net-

work of Santiago, Chile, which has a grid-like structure
and is of clearly different character to that of Toulouse
(Figure 2). This structure means that travel loads are more

a b

Figure 8 The process of link removal. Two stages are shown:
a) having previously calculated betweenness values for this network
(shown in Figure 2f), the link e with the highest betweenness value in
the original network is identified and highlighted red, b) the
remaining network after the removal of e.
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Figure 9 The evolution of the systemwhen one link is removed from the network. The removal is as demonstrated in Figure 8, and
betweenness values are recalculated accordingly. As previously, segments have been coloured according to the value of Q. The parameter values
are η = 0.4,� = 0.5 and ω = 0.7, and the value of δt used in the simulations is 0.01.

evenly distributed - the betweenness centrality values
shown in Figure 10a) are generally not as high as those for
Toulouse and show little variation across the network. The
effect of this for the model is that no pronounced peaks of
burglary risk are predicted, as seen in Figure 10b) where
the equilibrium state is shown. In this case the effect is not
caused by the diffusion on the network, but rather by the
lack of variation in underlying risk caused by travel pat-
terns. In a situation such as this, patterns of pedestrian
flow have less predictive value in terms of crime risk, since
streets can be less clearly distinguished on that basis.

Conclusions
Theories of environmental criminology emphasise the
importance of urban configuration in determining pat-
terns of crime, since it is the primary determinant of
human movement patterns. The street network is the pri-
mary structure by which this configuration is determined,
and there is evidence that it shapes patterns of crime.
Despite recent interest in the mathematical modelling of
burglary, however, few models have sought to explicitly
include network effects. We have presented a novel math-
ematical model for residential burglary which takes such

a b

Figure 10 The example of Santiago, Chile. Figure a) shows
betweenness centrality values, plotted on the same colour scale as
used for Toulouse in Figure 2f; values in this case are generally not as
high and vary little. Figure b) shows equilibrium values of Q for this
network, for an equivalent simulation to that shown in Figure 4; again,
the colour scale is the same as used in 4.

effects into account. The influence of the street network is
manifested in two ways: by restricting the spread of crime
to only occur along network connections, and by incorpo-
rating network metrics as a proxy for human activity.
We have presented several stylised examples demon-

strating the qualitative behaviour of the model. These
examples correspond to scenarios for which a model such
as this are likely to be of use, ranging from ‘real-time’
predictive circumstances to the general analysis of policy
interventions. In all cases, the effect of the network is evi-
dent: there is a marked difference between model results
and what would have been predicted by a non-network
model, and the non-linear nature of network dynamics are
illustrated.
The consideration of street networks in models of crime

is well-motivated, and the results shown here illustrate
its importance. From a practical point of view, this is
encouraging, since networks (the properties of which are
quantifiable) represent another means by which crime
prevention efforts can be concentrated. Indeed, the non-
linear effects shown here suggest that full understanding
of network effects may amplify the effect of targeted
policing.
The potential use of the model presented here is,

of course, dependent on the existence of a relation-
ship between network properties and crime rates of the
expected form. Although an empirical base has been
established in support of a general relationship, analy-
sis has not yet been conducted using metrics of the type
considered in this paper. Future research will involve the
exploration of this question via statistical analysis, as well
as considering the influence of network configuration on
the phenomenon of near-repeat victimisation. This would
then provide a basis for the implementation of the model
proposed here in a practical setting. Research addressing
the question of how the output of such predictive mod-
els can best be translated into police activity is currently
ongoing, and represents the crucial stage in the evolution
from abstract models to practical outcomes.
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