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Abstract 

Crime prediction serves as a valuable tool for deriving insightful information that can inform policy decisions 
at both operational and strategic tiers. This information can be used to identify high‑crime areas, and optimise 
resource allocation and personnel management for crime prevention. Traditionally, techniques such as the Poisson 
model and regression analysis have been widely used for crime prediction. However, recent statistical advancements 
have introduced Integrated Nested Laplace Approximations (INLA) as a promising alternative for spatial and temporal 
data analysis. This study focuses on crime prediction using the INLA model. Specifically, the first‑order autoregres‑
sive model under the INLA modelling framework is employed on longitudinal data for crime predictions in different 
regions of the City of Johannesburg, South Africa. The model parameters and hyperparameters considering space 
and time are estimated through the INLA model. In this work, the suitability and performance of the INLA model 
for crime prediction is assessed, which effectively captures spatial and temporal patterns. This study contributes 
to research by first introducing a novel approach for South African crime prediction. Secondly, it develops a model 
using no demographic information other than clustering attributes as an exogenous variable. Thirdly, it quantifies 
prediction uncertainty. Finally, it addresses data scarcity through demonstrating how INLA can provide reliable crime 
predictions, where conventional methods are limited. Based on our findings, the INLA model ranked areas by crime 
levels, obtaining a 29.3% Mean Absolute Percentage Error (MAPE) and 0.8 R2 value for crime predictions. These 
findings and contributions presents the potential of INLA in advancing evidence‑based decision‑making for crime 
prevention.
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Introduction
Ranked among the countries with the highest crime 
rates globally (Institute for Economics and Peace, 2023), 
South Africa grapples with pervasive levels of crimi-
nal activity, further compounded by a notably low ratio 

of police-to-population. According to estimates by the 
United Nations (UN), the average police-to-population 
ratio globally is 342 police officers per 100,000 people. 
In contrast, South Africa reports a lower ratio, with only 
240 police officers per 100,000 people (SAPS, 2023). As 
a result, police visibility suffers, making it extremely dif-
ficult to combat crime, especially offences that could be 
controlled through visible policing. South Africa’s alarm-
ing crime rate and low police officer-to-population ratio 
underscores the urgency and motivation for developing 
effective methodologies to predict and mitigate crime. 
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Therefore, this work implements predictive modelling 
using crime data that is publicly available and published 
quarterly by the South African Police Service (SAPS). By 
focusing on South African crime data, this study aims 
to develop a predictive model to better suit the unique 
characteristics and challenges of this specific context. 
This approach is significant because it acknowledges the 
distinct nature of South African crime data compared to 
other international datasets typically used in predictive 
crime modelling. Furthermore, leveraging the advance-
ments in science and technology can prove to be pivotal 
in such cases. This research thus intends to develop a tool 
that uses both statistics and geographic information sys-
tems (GIS) to provide crime analytics and one-quarter-
ahead crime forecasts at the police station area level.

The predictive capability of the tool would enable 
police officers to be proactive rather than reactive in their 
approach to combating crime. By adapting and refining 
predictive models tailored to South Africa, this work 
seeks to enhance the accuracy and reliability of crime 
prediction methodologies and optimise police resource 
allocation in the country. This optimisation of police 
resource allocation not only aids law enforcement and 
policymakers in combating the country’s severe crime 
situation but also revolutionises policing strategies by 
promoting well-informed, evidence-based practices.

Predictive policing is one of the applications of analyti-
cal techniques in which researchers and law enforcement 
agencies work together to combat crime by developing 
tools that predict crime, resulting in the more precise and 
effective use of law enforcement resources. For instance, 
Borges et al. (2018) developed a crime prediction frame-
work that contributes to predictive policing initiatives 
by incorporating patrols in the most likely predicted 
criminal areas. Blanes I Vidal and Mastrobuoni (2018) 
also carried out a large, scientific-based study on visible 
policing in the UK. Their findings revealed that although 
simply increasing police presence through street patrols 
was able to deter crime to some extent, traditional patrol-
ling methods did not yield significant long-term crime 
prevention outcomes. Consequently, integrating science 
and technology into policing operations ensures resource 
allocation optimisation, maximising their impact on 
crime prevention and law enforcement efforts.

In this work, we explore the use of the INLA model as 
our model of interest to predict levels of crime in the City 
of Johannesburg (CoJ). We aim to identify potential high-
crime areas within the CoJ to facilitate targeted police 
resource allocation. The crime dataset that we are using 
is sparse in terms of both temporal and spatial resolution, 
aggregated at the police station boundary level. This pre-
sents a challenge for crime prediction within a context of 
scarce data availability. The study thus also explores the 

potential of advanced statistical techniques like INLA to 
produce reliable crime predictions despite data scarcity. 
The subsequent sections of the paper will be structured 
as follows: firstly, the literature review will discuss appli-
cations of INLA and other approaches to crime predic-
tion such as spatial regression and Bayesian networks. 
Next, we describe the data used, providing an exploratory 
data analysis. We then discuss the methodology of using 
INLA, describing the model, its mathematical underpin-
nings, as well as the evaluation methods used for assess-
ing the INLA model. Afterwards, we present the results 
of using the INLA model, including its goodness-of-fit, 
predictions for the various regions of Johannesburg, and 
its performance based on evaluation metrics such as 
MAPE. Finally, we discuss this work, its limitations, and 
conclude with the significance of the results of the INLA 
model in the context of crime prediction in South Africa.

Literature review on approaches to crime 
prediction
Crime prevention and public safety are crucial concerns 
for societies around the world. Law enforcement agen-
cies and policymakers strive to develop effective strate-
gies to combat crime and allocate resources efficiently. In 
recent years, there has been a growing interest in utilising 
mathematical and statistical methods to predict crime 
occurrences and assist in proactive law enforcement 
efforts (Kang and Kang, 2017; Khan et  al., 2022). These 
methods leverage the power of data analysis, modelling, 
and predictive analytics to identify patterns, understand 
the underlying factors, and forecast crime rates and hot-
spots. In this literature review, we introduce Integrated 
Nested Laplace Approximation (INLA), then explore dif-
ferent methodologies used in crime prediction, including 
approaches such as Bayesian networks and regression. 
We look at how previous research have similarly used 
historical crime data for the same motivation of crime 
prediction. We also note the limitations of each method, 
how INLA may address these and the scarcity of similar 
studies conducted in the South African context.

The Integrated Nested Laplace Approximation (INLA) 
is a Bayesian inference alternative to the computationally 
intensive Markov Chain Monte Carlo (MCMC) meth-
ods. INLA enables fast approximate inference for latent 
Gaussian models. Boqué et  al. (2022) highlighted that, 
one of the INLA advantages is that it avoids long com-
puting time compared to the MCMC approach. Fur-
thermore, Boqué et  al. (2022) have successfully applied 
the logarithmic-Gaussian spatio-temporal model with 
INLA to predict weekly burglaries, which has yielded 
notable results. This model takes into account the latent 
risk of burglary in both space and time, and was able to 
identify the spatial correlation in the range of distances. 
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Consequently, each burglary increases the probability 
of subsequent burglaries both close to and further away 
from the initial incidence. Their findings advocate for the 
use of INLA as a model proficient in studying or fore-
casting near-repeat victimization incidents. Vicente et al. 
(2023) proposed multivariate Bayesian spatio-temporal 
P-splines models fitted using INLA to study various types 
of violence against women in India. The model was effec-
tive in showing spatial patterns of different types of vio-
lence against women and in identifying high-risk crime 
in specific areas (Vicente et al., 2023).

Regarding other approaches to crime prediction, we 
first consider Bayesian networks, which are probabil-
istic graphical models that can represent the relation-
ships between variables and provide predictions based 
on available evidence. In the context of crime prediction, 
Bayesian networks can capture dependencies between 
different factors (e.g., demographics, past crime data, 
environmental factors) and estimate the likelihood of 
future crime occurrences (Liao et al., 2010). A Bayesian-
based crime prediction model was developed by Liao 
et al. (2010) using geographic data and victim attributes 
based in Baiyin city, China, over several months. The 
authors predicted the next crime site chosen by a serial 
offender, with a particular focus on geographical factors. 
They developed a geographic profile, which represents 
the probability distribution of crime events, using a dis-
crete distance decay function. Finally, Bayesian learn-
ing theory was adapted with geographic characteristics 
to precisely forecast crime levels in regions of interest. 
However, a limitation of Bayesian networks is that they 
may struggle with rare or low-frequency events. Crime 
prediction often involves identifying and predicting rare 
or emerging criminal activities. Bayesian networks may 
face challenges in accurately capturing and predicting 
these rare events due to the limited availability of train-
ing data for such events. Another limitation relevant to 
this study in the context of Bayesian networks is that they 
typically predict events or outcomes rather than counts 
over a specific area (Hu et  al., 2018). INLA can handle 
rare events more effectively by leveraging hierarchi-
cal modelling techniques, which enable the borrowing 
of strength across different spatial and temporal units. 
Moreover, INLA’s ability to model counts over specific 
areas makes it well-suited for crime prediction tasks that 
involve predicting crime counts at police station area or 
grid cell levels.

Regression analysis is another statistical technique 
used for crime prediction, that explores the relationship 
between a dependent variable (such as crime rates) and 
one or more independent variables (such as demographic 
variables, socioeconomic factors, or past crime data). 
Specifically, spatial regression analysis is a statistical 

technique that combines the components of traditional 
regression analysis with spatial analysis to simulate cor-
relations between variables, while taking into consid-
eration spatial dependencies in the data. The regression 
model known as Ordinary Least Squared (OLS) and the 
spatial technique known as Spatial Autoregressive (SAR) 
were employed by Ahmar et  al. (2018) to predict and 
model crime. They also incorporated the Lagrange Mul-
tiplier (LM) to detect the existence of spatial dependency. 
Additionally, Chainey et al. (2008) conducted a study that 
focused on hot-spot mapping as a fundamental method 
of predicting crimes. However, a limitation of traditional 
spatial regression analysis is the computational burden 
and instability when dealing with large datasets or com-
plex spatial structures (Urdangarin et  al., 2023). INLA 
overcomes this computational burden by employing a 
computationally efficient and accurate Laplace approxi-
mation. This approximation method allows for faster 
computation while still providing accurate posterior esti-
mates, making it particularly suitable for large and com-
plex spatial models (Urdangarin et  al., 2023). Moreover, 
INLA does not require a large dataset as required for 
regression, making it suitable for this context where a 
large dataset is unavailable in South Africa.

The Poisson model is one of the regression models for 
count data that has been widely used for crime predic-
tion and analysis due to its applicability in capturing the 
characteristics of crime incidents. Muchika et al. (2020) 
applied Generalised and Quasi Poisson regression to 
burglary crime data in Kenya. In their findings, the Gen-
eralised Poisson provided nearly an excellent fit for pre-
dicting burglary incidents in Nairobi, Kenya as compared 
to Quasi Poisson. Their study further revealed that for 
under-dispersed count data, the Generalised Poisson per-
forms better than both the standard and Quasi Poisson.

However, conventional models like Poisson regression 
and OLS have limitations, such as the strict assumption 
of data following a Poisson distribution and the inability 
to handle spatial and temporal dependencies effectively. 
For instance, the Poisson model cannot accurately fore-
cast crime counts in regions with no reported crime, 
limiting its practical applicability (Gordon, 2010; Poy-
ton et  al., 2006). INLA offers a more flexible modelling 
framework that can accommodate various distributional 
assumptions and handle spatial and temporal struc-
tures in the data. Its hierarchical modelling approach 
allows for capturing complex relationships between 
crime variables and potential factors while address-
ing non-stationarity and spatial dependencies. Addi-
tionally, INLA’s spline-based modelling can improve 
forecasting accuracy by extrapolating basis functions 
beyond the region of estimation, enabling more reli-
able predictions even in regions with sparse or missing 
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data. Moreover, approaches such as Poisson often fail to 
quantify uncertainties associated with model parameters, 
such as regression coefficients (Gourieroux et al., 1984). 
INLA addresses this limitation by adopting a probabil-
istic framework, generating posterior distributions that 
reflect uncertainties in crime prediction models (Muff 
et al., 2015). Through these distributions, credible inter-
vals are calculated, providing a measure of uncertainty 
for estimated parameters and facilitating informed 
decision-making. Although the standard Poisson model 
performs better with included basis functions, their sub-
jective selection may lead to misspecification (Marra and 
Radice, 2010). INLA overcomes this by automating basis 
function selection through model comparison and Bayes-
ian model averaging, improving the fitting process, and 
capturing complex predictor-crime count relationships 
(Louzada et  al., 2021). Additionally, INLA can estimate 
model parameters and uncertainties even in regions with 
limited or no reported crime data, addressing the Pois-
son model’s limitation in extrapolation. Furthermore, 
INLA provides a framework to model over-dispersed 
count data and incorporate additional spatial or temporal 
factors, enhancing the representation of crime patterns 
(Louzada et al., 2021).

Overall, while INLA has been employed for crime pre-
diction internationally, it is yet to be tested in the South 
African context as seen by the majority of literature origi-
nating internationally (Boqué et  al., 2022; Vicente et  al., 
2023).

Data
Data description
The reported crime data used in this study was collected 
in South Africa over quarters (time) from 2017 to the 
fourth quarter of 2021, and are indexed by both time and 
space (spatio-temporal). The data were split into train-
ing and test sets. Due to limited data, we allocated 95% 
to training and 5% to testing to maximise the training 
data and build a robust model. Crime data from 2017 to 
the third quarter of 2021 were used as the training data 
while the fourth quarter of crime data were used as test 
data. The training data were used to train the model and 
the test data were used to test the model. Recall that we 
were operating in a data-scarce environment, with pub-
licly available data sets containing only aggregated infor-
mation (spatially and temporally). For this reason, the 
application of techniques such as time series analysis and 
machine learning were not feasible. These crime statis-
tics include crime counts for different crime categories, 
and are recorded in every police station in South Africa, 
but in this study, only the data from the City of Johan-
nesburg (CoJ) were used for our model. In addition, only 

certain of the SAPS crime categories (those more related 
to visible policing) were selected for later analysis and 
these categories are listed in Table  1 in Appendix. Fig-
ure 1 above illustrates police station boundaries, or areas, 
for all police stations located within CoJ. Additionally, 
by aggregating crime counts across the crime types, we 
circumvent the challenge of temporal sparsity while pre-
serving the predictive accuracy essential for area-level 
analysis aimed at targeting crime hot-spots.

As mentioned, the crime data is publicly available and 
published quarterly by the South African Police Service 
(SAPS). The polygons in Fig. 1 represent 43 demarcated 
SAPS areas around police stations that encompass a vari-
ety of socioeconomic and crime-type characteristics. 
With regards to data subjectivity, the crime data used 
faces inherent biases due to its reliance on police reports. 
Human reporting introduces subjectivity, potentially 
leading to under-reporting or over-reporting based on 
various factors. Additionally, the accuracy of reported 
crime locations may be compromised, as incidents are 
recorded at police stations or hospitals rather than the 
actual crime scene. Moreover, certain crimes are often 
under-reported, particularly for offences such as theft 
and vandalism, which are often only reported for insur-
ance purposes. We thus acknowledge this inherent bias 
in the data and note its limitations for this study. In our 
study, we mitigate bias inherent in the crime data by cap-
turing uncertainties. Specifically, we calculate the 2.5th, 
50th (posterior mean), and 97.5th percentiles of the pos-
terior distribution obtained from our predictive model. 
These percentiles provide valuable insights into the 
uncertainty associated with our predictions, allowing us 

Fig. 1 Police station boundaries in the City of Johannesburg
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to account for biases in the data, such as under-report-
ing and inaccuracies in crime location, as well as model 
uncertainties. By considering a range of possible sce-
narios rather than relying solely on point estimates, we 
enhance the robustness of our analysis.

Exploratory analysis of data
As mentioned above, crime counts were only available 
at a police station area level. In order to visualise these 
data spatially, the map given in Fig. 2 was generated, illus-
trating the average quarterly crime counts per police sta-
tion across the selected crime categories listed in Table 1. 
Spatial variations in crime counts can be observed across 
these different police station areas.

Time-based trends of crime were observed by plotting 
crime counts per crime type over time. An example of 
these trend graphs is given in Fig.  3. This plot includes 
the trends of specific burglary and theft crime categories 
and indicates a general downward trend in these crime 
types.

Before starting the predictive modelling, further 
exploratory analysis was performed on the SAPS data 
to determine whether there was any temporal or spatial 
autocorrelations in the data. To test for temporal auto-
correlation in the data, the Ljung-Box test was used and if 
significant then the Autocorrelation Function (ACF) plot 
was drawn [see Armstrong (2001) for further details on 
these measures]. Many of the crime types exhibited serial 
correlation using both the Ljung-Box test and the ACF 
plot. For example, Fig. 4 indicates the strong time-based 
autocorrelation for the crimes “Burglary at residential 
premises” and “Theft out of motor vehicle” from lag1. 
These lag1 autocorrelations correspond to the trends 
seen in Fig. 3.

Spatial autocorrelation can be defined as the presence 
of systematic spatial variation and in order to test for 
positive spatial autocorrelation, i.e. the tendency of areas 
close together to have similar values (Haining, 2001), 
Moran’s I (Dubé and Legros, 2014), together with Local 
Indicators of Spatial Association (LISA) maps (Jesri et al., 
2021), were selected as the tools for assessing spatial 
autocorrelation. The Moran’s I statistic for these data of 
overall crime averages per police station was 0.5 (p-value: 
0.001) and therefore indicated significant spatial autocor-
relation overall. The Moran’s local I scatter plot and the 
LISA map are given in Fig. 5.

The LISA map clearly shows the spatial separation of 
different crime rates, with high crime rates being clus-
tered around the central Johannesburg region and low 
crime rates being clustered together down in the South-
west area of the city region.

The significant spatial autocorrelation observed in 
Fig. 5 indicates the requirement of including a spatial 
element in the crime prediction modelling and the 
evidence of temporal autocorrelation in the data for 

Fig. 2 Plot of average quarterly crime counts per police station area 
in CoJ

Fig. 3 Quarterly trend of CoJ crime counts for thefts and burglaries
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a number of the crime types, as illustrated in Fig.  4 
above, suggested the need for introducing a predic-
tion model that included an autoregressive (AR) 
component. This combined evidence for both spatial 
and temporal autocorrelation resulted in the need to 

consider a spatio-temporal modelling technique that 
would be appropriate for the available data. This spa-
tio-temporal modelling technique is discussed in the 
next section.

Fig. 4 ACF plot of a Burglary at residential premises and b Theft out of motor vehicle

Fig. 5 Plots of the a Moran’s local I statistic and b LISA map



Page 7 of 14Coleman et al. Crime Science           (2024) 13:25  

Methodology
Definition and implementation of INLA
This study predicts regions in which crime is most likely to 
occur so that preventative measures may be employed in 
the most efficient and effective way. Intuitively, the imme-
diate past values of a variable should have a better fore-
casting ability to predict near future values, therefore, the 
simplest autoregressive model would give the most recent 
observed outcome of the time series a higher weight in pre-
dicting future values. The time series of crime counts (yt) 
can be modelled with a first-order autoregressive model 
(AR(1)), where 1 indicates the order of autoregression rep-
resented in Eq. (1) as

where yt is the count of crime at each subplace at quar-
ter t. yt−1 is the count of crime in the previous quarter. 
θ1 is the coefficient for yt−1 , representing the relationship 
between crime count at the current quarter and crime 
count at previous quarter. The value of θ1 will always be 1 
or − 1 for the series to satisfy the assumption of station-
arity. εt is the error term at time t . This represents the 
difference between the period t value and the predicted 
value using the model.

In this model, the previous crime counts in a specific 
quarter are used to predict the crime counts in the next 
quarter. The statistical model used to predict crime relies 
on the assumption of some degree of dependence in time 
and between locations. The multivariate Poisson-based 
models are a natural match to spatio-temporal time series 
of counts, and these have been employed in various appli-
cations. Bayesian-based models, which enable the quan-
tification of uncertainties around predictions, have been 
applied in spatio-temporal data and performed well. Under 
the Bayesian modelling paradigm, when the posterior dis-
tribution is not available in a closed form, this necessitates 
resorting to other numerical methods such as the Markov 
Chain Monte Carlo (MCMC), for its estimation. The aim of 
the Bayesian model is to estimate the joint posterior distri-
bution, which relies on Bayes theorem, shown in Eq. (2) as

where π
(

θ
∣

∣y
)

 represents the posterior distribution of the 
model parameters θ given the observed crime counts y. 
π
(

y
∣

∣θ
)

 denotes the likelihood function, indicating the 
probability of observing the crime counts y given the 
model parameters θ . π(θ) signifies the prior distribution 
of the model parameters, representing our initial beliefs 
or knowledge about the parameters before observing the 
data. π

(

y
)

 serves as the marginal likelihood function of 

(1)yt = θ0 + θ1yt−1 + εt

(2)π
(

θ
∣

∣y
)

=
π
(

y
∣

∣θ
)

π(θ)

π
(

y
)

crime occurrence, acting as a normalisation constant to 
ensure that the posterior distribution integrates to one. 
The posterior distribution π

(

θ
∣

∣y
)

 of crime levels is mul-
tivariate and is only available in closed form from a few 
models because the marginal likelihood π

(

y
)

 is difficult 
to estimate. Hence, in practice, the posterior distribu-
tion is estimated without computing the marginal likeli-
hood. For this reason, Bayes’ theorem is often expressed 
as shown in Eq. (3):

This demonstrates the proportionality between the pos-
terior distribution of the model parameters θ given the 
data y , and the product of the likelihood of the data given 
the model parameters θ and the prior distribution of the 
model parameters θ . This means that the posterior dis-
tribution can be estimated by rescaling the product of 
the likelihood and the prior so that it integrates to one. 
Bayesian inference relies on MCMC methods, which 
are computationally expensive, as the model parameters 
of the posterior distribution are often found in spaces 
of high dimension. Instead of estimating a highly multi-
variate joint posterior distribution π

(

θ
∣

∣y
)

 , the Integrated 
Nested Laplace approximation (INLA) is used. The goal 
of INLA is to obtain the approximations of the univariate 
posterior distributions π

(

θi
∣

∣y
)

 represented in Eq. (4) by,

where  θi represents a specific parameter of interest 
within the set of parameters θ . θ−i represent all the other 
parameters in the set θ , excluding θi . This includes all 
parameters except the specific parameter of interest. i 
ranges from 1 to dim(θ).

The integral in Eq.  (4) indicates that we’re integrating 
over all possible values of the other parameters ( θ−i ), 
while keeping θi fixed. This integration helps us to com-
pute the posterior distribution of θi given the observed 
data y.

Regarding the lack of bounds for the integral, in the 
context of INLA, the integral is typically performed over 
the entire parameter space. This means that we are con-
sidering all possible values of the parameters within their 
feasible range. The lack of explicit bounds in the equation 
doesn’t mean that the integral is unbounded; rather, it is 
understood to be performed over the appropriate range 
of values for each parameter.

The posterior marginal distribution of each element of 
θ can be obtained by integrating out the remainder of the 
parameters. The integrals of this type can be conveniently 

(3)π
(

θ
∣

∣y
)

∝ π
(

y
∣

∣θ
)

π(θ)

(4)π
(

θi
∣

∣y
)

=

∫ dim(θ)

1

π
(

y
∣

∣θ
)

dθ−i ,
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approximated using numerical integration methods and 
the Laplace approximation (Tierney and Kadane, 1986). 
INLA makes Bayesian inference faster since, instead of 
aiming at estimating the joint posterior distribution of 
the model parameters, it focuses on individual marginal 
distributions of the model parameters. INLA estimates 
the fixed and random effects of the model and uses com-
plex covariance structures to improve crime predictions. 
As the entire crime distribution is predicted, the uncer-
tainty surrounding crime projections are quantified. In 
this study, the modelling approach limited the inclusion 
of exogenous variables, since police intervention in areas 
with high predicted levels of crime could influence the 
crime predictive ability of demographic variables.

In this study, the separability assumption was consid-
ered, which asserts that the space and time correlation 
can be modelled separately, allowing time autocorrelation 
to be captured in the autoregressive model while the spa-
tial correlation is examined using the Besag–York–Mol-
lié (BYM) model. Morris et  al. (2019) defines the BYM 
model as a lognormal Poisson model which includes 
both an ICAR component for spatial auto-correlation 
and an ordinary random-effects component for non-
spatial heterogeneity. This model was selected for our 
work because it assumes spatial correlations in the data, 
indicating that observations from neighboring areas are 
likely to be more similar to each other than areas that are 
further away (Moraga, 2019). The first-order autoregres-
sive model within the INLA framework was fitted using 
historical crime counts to predict future crime counts in 
areas within the City of Johannesburg. Before fitting the 
spatio-temporal model, we first computed the adjacency 
structure of the sub-places within the City of Johannes-
burg using shapefile datasets. Additionally, we opted for 
a separable model in this study. In particular, the spatial 
effect was modelled using an Intrinsic Conditional Auto-
Regressive (ICAR) model and the temporal trend using an 
Autoregressive (AR1) latent effect, and the vague priors 
were used to avoid over-fitting. According to Besag (1974), 
when areal data are assumed to have a spatial structure 
such that observations from neighbouring regions exhibit 
higher correlation than distant regions, this correlation 
can be accounted for by using the class of spatial models 
called “CAR” (Conditional Auto-Regressive). This calcula-
tion was done using a function poly2nb() in R (R Core 
Team, 2021). In the simplified form, the model fitted is:

where  besag is the Besag spatial model. adj.
mat is the adjacency structure of the subplaces in 
the City of Johannesburg. ar1 is the autoregressive 
model of order 1. crime is the dependent variable. 
F(quarter,model=ar1) is the temporal term of 
the model (time series).Quantile is the fixed effect. 
f(Areas, model = "besag", graph = adj.
mat) is the spatial component of the model. The com-
plete fitted model with the poly2nb() function used can 
be found in the code’s GitHub repository.1

Evaluating the INLA model
The appropriateness and usefulness of the INLA model was 
evaluated by assessing its Goodness-of-fit. This included 
calculating the Conditional Predictive Ordinate (CPO), 
Probability Integral Transform (PIT) values, as well as the 
R-squared and Kolmogorov-Smirnov (KS) statistic. Sub-
sequently, the performance of the model was evaluated 
through the use of the Mean Absolute Percentage Error 
(MAPE), and an analysis of the resultant actual vs predicted 
crime counts graph with a 95% confidence interval.

Goodness-of-fit serves as a reliable metric for evaluat-
ing the effectiveness and appropriateness of our model by 
evaluating how well it fits the observed data. This evalu-
ation provides insights into the model’s ability to capture 
the complex patterns and variations present in crime 
data. To assess the Goodness-of-fit for the INLA model, 
firstly, the Conditional Predictive Ordinate (CPO) and 
Probability Integral Transform (PIT) values were calcu-
lated as follows:

Conditional Predictive Ordinate (CPO):

where  yi denotes the i-th observed crime count. y−i 
refers to the vector of all observed crime counts exclud-
ing the i-th observed crime count. p(yi|y−i) is the con-
ditional predictive distribution of the i-th observation 
given the remaining data points.

Probability Integral Transform (PIT):

(5)CPOi =
1

p(yi|y−i)

(6)PITi =

∫ yi

−∞

p(yi|y−i)dyi,

1 https:// github. com/ CSIR- CoJ- Crime- Proje ct/ COJ- INLA- Predi ctions. git.

 

 

https://github.com/CSIR-CoJ-Crime-Project/COJ-INLA-Predictions.git
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where  yi denotes the i-th observed crime count. y−i 
refers to the vector of all observed crime counts exclud-
ing the i-th crime observation. p(yi|y−i) is the conditional 
predictive distribution of the i-th observation given all 
crime observations excluding the i-th crime observation. 
Next, the coefficient of determination, often denoted as 
R2 , was calculated using the following formula:

where  yi is the actual crime count value at quarter i , 
ŷi is the predicted value at quarter i , ȳ is the mean of 
the actual crime count values, n is the total number of 
quarters.

We also included the Kolmogorov–Smirnov (KS) sta-
tistic, defined in Eq.  8 below, to supplement the reli-
ability and appropriateness of our model’s predictions, 
by further evaluating the overall Goodness-of-fit of our 
model’s predictions. The KS statistic measures the dif-
ference between the cumulative distribution functions 
of predicted and actual crime counts. The Kolmogorov-
Smirnov test statistic is given by:

where Fn(x) is the empirical distribution function of the 
sample and F(x) is the theoretical cumulative distribu-
tion function.

Finally, the Mean Absolute Percentage Error (MAPE) 
is a commonly used metric to evaluate the ability of 
forecasting models. It reflects the accuracy of a model’s 
predictions in comparison to its actual outcomes. The 
MAPE is calculated as:

(7)R2 = 1−

∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳ)2

(8)Dn = sup
x

|Fn(x)− F(x)|

(9)MAPE =
1

n

n
∑

i=1

∣

∣

∣

∣

Ai − Fi

Ai

∣

∣

∣

∣

× 100%

where  Ai is the actual value, Fi is the forecasted (pre-
dicted) value, n is the total number of observations.

Results
In this section, we provide the results after applying 
the INLA model to predict future crime counts in the 
43 police station areas in CoJ during the fourth quarter 
of the 2021 financial year, based on historic quarterly 
records.

Goodness‑of‑fit of the INLA model
If the model accurately predicts the crime levels, then 
the PIT values should be approximately uniformly dis-
tributed. In Fig. 6a below, the graph for the PIT shows an 
approximate uniform distribution and thus predicts fairly 
well. Next, the model suggests that an observation with 
a small CPO value is unlikely. Based on Fig. 6b, there are 
no CPO values that are considerably smaller than others 
hence, with respect to the model, none of the observed 
values would be considered unlikely.

The R2 value of the model was 0.8, indicating that the 
model explains 80% of the variability in the observed crime 
data. This shows that the INLA model fits the crime data 
well, indicating that the predictions closely match the 
observed data. Thus the model accurately represents the 
observed data and captures the underlying patterns and 
relationships. Finally, the KS statistic (D = 0.18605) is rela-
tively small, suggesting that the predicted and actual distri-
butions are similar. This affirms the adequacy of the model 
in capturing the underlying distribution of the data.

Therefore, the use of the INLA model to predict crime 
count in regions of the City of Johannesburg in quarter 
four in 2021 was appropriate and justifiable.

Predictive performance of the INLA model
Figure  7 provides a comparison between the predicted 
average crime counts and the actual crime counts of the 

Fig. 6 Goodness‑of‑fit for INLA model showing PIT and CPO distributions. a represents the PIT distribution and b represents the CPO distribution
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police stations during the fourth quarter of 2021 finan-
cial year. A scatter plot of these results is shown together 
with a 95% confidence interval.The 95% confidence inter-
val indicates that there is a 95% probability that the true 
mean falls within the calculated interval. It was calcu-
lated by taking the mean and adding and subtracting the 
margin of error. This margin of error was determined 
by multiplying the standard error by the critical value 
corresponding to a 95% confidence level from the pos-
terior distribution. Table  2 and Fig.  9 in Appendix pro-
vide the predictions at 2.5, 50 (posterior mean) and 97.5 
percentiles of the posterior distribution. It is found that 
the model performed relatively well, with some variance 
between the actual and predicted values and a few sta-
tions either under-predicted or over-predicted. This is 
evident as the plot shows that the points are dispersed 
around the diagonal line, with closer proximity to the 
line indicating smaller residuals and thus a stronger fit 
between predicted and actual crime values. This obser-
vation underscores the model’s effectiveness in accurately 
representing the data.

The crime forecasts are displayed spatially in Fig.  8 
below using a colour scale to show the prevalence of 
crime in each police station area. The areas shaded in 
yellow indicate high levels of crime while the dark pur-
ple show low levels of crime. Figure 8 indicates that areas 
such as Midrand, Sandton, Douglasdale, Roodepoort, 
Dobsonville and Moroka were predicted to have high lev-
els of crime in quarter 4 of 2021. Areas adjacent to each 
other do not appear to be affected similarly by crime. We 
thus were able to identify the high-crime areas using the 
INLA model.

The MAPE calculated from the predictions was 29.3%, 
indicating that the predictions were, on average, 29.3% 
different from the actual values. We also observed in 
Fig. 7, where actual crime counts are plotted against pre-
dicted crime counts, that the model performs reasonably 
well, with data points scattered around the diagonal line 
on the two-dimensional Cartesian plane.

Discussion
The evaluation of the INLA model’s Goodness-of-fit and 
predictive performance holds significant implications 
for crime prediction in the CoJ. The Probability Inte-
gral Transform (PIT) values and Calibration Probability 
(CPO) values, alongside a high R2 value of 0.8, under-
score the model’s appropriateness in accurately predict-
ing crime levels and capturing underlying patterns and 
relationships. Despite some variance between predicted 
and actual values, as illustrated in Fig. 7, the model per-
formed moderately well. The Mean Absolute Percentage 
Error (MAPE) value of 29.3% also highlights the extent 
of variance between predicted and actual crime counts. 
Although this level of variance was not remarkably low 
and indicates a need for further refinement of the model, 
the model’s residuals were relatively consistent. Notably, 
as shown in Fig.  8, regions such as Midrand, Sandton, 
Douglasdale, Roodepoort, Dobsonville, and Moroka were 

Fig. 7 Actual crime counts versus predicted crime counts 
for the fourth quarter of 2021 in CoJ, with a 95% confidence interval

Fig. 8 Spatial representation of crime predictions in police station 
areas within CoJ
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predicted to have high levels of crime, enabling targeted 
resource allocation and intervention strategies.

In comparison to existing literature on crime predic-
tion methodologies, our implementation of the INLA 
model offers notable advantages. While previous studies 
have explored various approaches such as Bayesian net-
works and regression models (Gorr and Lee, 2015; Kang 
and Kang, 2017), they often face limitations in accurately 
quantifying uncertainties associated with model param-
eters and handling spatial and temporal dependencies. 
For instance, conventional models like Poisson regres-
sion and Ordinary Least Squares (OLS) regression may 
struggle with accurately representing complex relation-
ships between predictors and crime counts (Gourieroux 
et al., 1984; Marra and Radice, 2010). Our study demon-
strates that INLA addresses these limitations by adopting 
a probabilistic framework, generating posterior distribu-
tions that reflect uncertainties in crime prediction mod-
els (as seen in Table  2 and Fig.  9 in Appendix). This 
facilitates informed decision-making by providing cred-
ible intervals for estimated parameters. Moreover, while 
previous studies have shown that conventional models 
require subjective selection of basis functions (Louzada 
et  al., 2021), our findings illustrate that INLA success-
fully automates this process through model compari-
son and Bayesian model averaging, ensuring a better fit 
and capturing complex predictor-crime count relation-
ships. Additionally, our results demonstrate that INLA’s 
flexibility allows it to estimate model parameters and 
uncertainties even in regions with scarce or no reported 
crime data, overcoming the Poisson model’s limitation 
in extrapolation (Louzada et  al., 2021). Furthermore, 
our study highlights that INLA can incorporate addi-
tional spatial or temporal factors, enhancing the repre-
sentation of crime patterns. While previous studies have 
demonstrated the efficacy of INLA in crime prediction 
internationally, our research contributes to filling this 
research gap by demonstrating its suitability for crime 
prediction in the distinct nature of South African crime 
data, providing valuable insights for evidence-based 
decision-making in crime prevention efforts. Moreover, 
the generalisability of our results extends beyond CoJ, as 
the INLA model’s flexibility and robustness make it appli-
cable to other regions facing similar challenges in crime 
prediction.

While our study provides valuable insights into crime 
prediction using the INLA model, it is important to 
acknowledge its limitations. Firstly, being a single case 
study focused on the City of Johannesburg, necessitates 
further research in diverse contexts. Secondly, biases 
in the data and potential issues with data quality, such 

as maintenance, poor record-keeping, or management 
practices, could introduce inaccuracies or inconsisten-
cies in the predictive model, impacting its reliability and 
effectiveness. Additionally, the aggregation of data at the 
police station area level may overlook nuances and vari-
ations within smaller geographical areas, limiting the 
granularity of our analysis. These limitations may have 
negatively impacted our model’s performance, as seen 
with the moderate MAPE score, hindering a compre-
hensive assessment of the INLA model’s effectiveness. 
However, despite these limitations, our study successfully 
identifies high-crime areas in CoJ and properly ordered 
regions according to expected levels of crime in the next 
quarter, fulfilling our primary objective and providing 
valuable insights for targeted crime prevention efforts.

Reflecting on the study’s contributions to crime pre-
diction research, our findings highlight the practical 
advantages of INLA in addressing the limitations of con-
ventional models and advancing evidence-based deci-
sion-making in crime prevention efforts.

Conclusions
In this study, INLA was investigated as the model of 
interest for crime prediction. INLA provided practi-
cal benefits, such as automated selection of a basis 
function and robust uncertainty estimation, making it 
an appealing choice for this work. Implementing the 
INLA model, we predicted the prevalence of crime 
in CoJ, identifying high-crime areas, and the vari-
ous degrees of crime frequency within different areas. 
Finally, we showcased how using statistical model-
ling techniques like INLA may provide reliable crime 
predictions in data-scarce scenarios, where conven-
tional methods like spatial regression fall short, and 
can enhance evidence-based decision-making in crime 
prevention. However, in terms of predictive accuracy, 
while an R2 value of 0.8 suggests a strong model fit, the 
MAPE of 29.3% indicates moderate predictive accu-
racy. This score highlights that, while the implemented 
model shows promise and provides various advan-
tages, its performance necessitates further refinement. 
This performance may be attributed to the limitations 
of our study, constraining the assessment of the INLA 
model.

On that note, we highlighted the limitations of this 
study relying on a single case study and a dataset with 
limited, aggregated observations. Also, we acknowl-
edged the inherent biases in the crime data stem-
ming from subjective human reporting and potential 
under-reporting, particularly for theft and vandal-
ism. To mitigate this bias, we calculated percentiles 
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of the posterior distribution to capture uncertain-
ties. However, we recognised that bias may still exist 
despite our mitigation efforts. In light of this, future 
research should address these limitations and strive for 
improvement by broadening the scope to encompass 
multiple cities, enhancing the accuracy and compre-
hensiveness of data, and utilising more granular data 
at the neighbourhood level. Additionally, integrating 
additional contextual factors such as socioeconomic 
variables and refining the model with advanced tech-
niques could further improve predictive accuracy.

Appendix: Crime categories and prediction 
distributions in CoJ
See Tables 1, 2, Fig. 9

Table 1 Crime categories

Murder

Sexual offences

Attempted murder

Assault with the intent to inflict grievous bodily harm

Common assault

Carjacking

Common robbery

Robbery with aggravating circumstances

Robbery at residential premises

Robbery at non‑residential premises

Robbery of cash in transit

Bank robbery

Truck hijacking

Arson

Malicious damage to property

Burglary at non‑residential premises

Burglary at residential premises

Theft of motor vehicle and motorcycle

Theft out of or from motor vehicle

All theft not mentioned elsewhere

Table 2 Predictions at 2.5, 50, and 97.5 percentiles of the crime 
distribution

Regions Area Code Posterior 
mean

0.025 quant 0.975 quant

ALEXANDRA ALE 126 115 136

BOOYSENS BOO 105 95 115

BRAMLEY BRA 72 61 83

BRIXTON BRI 77 67 87

CLEVELAND CLE 65 55 75

DIEPKLOOF DIE 69 59 79

DIEPSLOOT DIEP 106 95 116

DOBSONVILLE DOB 130 119 141

DOORNKOP DOO 38 27 49

DOUGLAS‑
DALE

DOU 126 115 136

ELDORADO 
PARK

ELD 105 94 116

ENNERDALE ENN 38 28 49

FAIRLAND FAI 34 23 44

FLORIDA FLO 65 55 75

HILLBROW HIL 136 125 147

HONEYDEW HON 139 128 150

IVORY PARK IVO 126 114 137

JABULANI JAB 72 61 82

JEPPE JEP 92 81 103

JHB CENTRAL JHB 139 128 149

KLIPTOWN KLI 66 56 77

LANGLAAGTE LAN 34 23 44

LENASIA LEN 64 52 74

LENASIA 
SOUTH

LENA 36 25 46

LINDEN LIN 74 64 84

MEADOW‑
LANDS

MEA 92 81 103

MIDRAND MID 143 132 154

MOFFATVIEW MOF 59 49 70

MONDEOR MON 100 90 110

MOROKA MOR 133 122 144

NALEDI NAL 40 29 51

NORWOOD NOR 31 21 42

ORLANDO ORA 98 87 108

PARKVIEW PAR 40 30 51

PROTEA PRO 101 90 111

RABIE RIDGE RAB 72 61 82

RANDBURG RAN 92 81 102

ROODEPOORT ROO 133 123 143

ROSEBANK ROS 38 27 49

SANDRING‑
HAM

SAND 34 23 44

SANDTON SAN 133 123 144

SOPHIA TOWN SOP 98 87 108

YEOVILLE YEO 45 34 56
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