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Abstract 

With the advent of spatial analysis, the importance of analyzing crime patterns based on location has become more 
apparent. Previous studies have advanced our understanding of the factors associated with crime concentration in 
street networks. However, it has recently become possible to assess the factors associated with crime at even finer 
spatial scales of streetscapes, such as the existence of greenery or walls, owing to the availability of streetscape image 
data and progress in machine learning-based image analysis. Such place-scale environments can be both crime-
producing and crime-preventing, depending on the composition of the streetscape environment. In this study, we 
attempted to assess the risk of crime occurrence through place-scale indicators using streetscape images and their 
interaction terms through binomial logistic regression modeling of the place-scale crime risk of theft from vehicles in 
the central part of Kyoto City, Japan. The results suggest that the effects of specific streetscape components on the 
risk of crime occurrence are certainly dependent on other components. For example, the association of the crime 
occurrence risk with the occupancy rate of vegetation in a streetscape image is positive when there are few buildings 
and walls, and vice versa. The findings of this study show the importance of considering the complex composition of 
visible streetscape components in assessing the place-scale risk of crime occurrence.
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Introduction
Understanding crime patterns is important for design-
ing safe living environments and implementing effec-
tive crime prevention activities. With the advent of new 
data analysis techniques, perspectives on crime patterns 
have shifted from the macro- or meso-level (e.g., cities, 
neighborhoods) to the micro-level (e.g., street segments, 
intersections, microgrids, proximity to specific facilities) 
(Weisburd et al., 2009; Eck & Guerette, 2012, Groff et al., 
2010). A well-known outcome at the micro-level scale is 

the discovery of crime hotspots. Law enforcement agen-
cies can apply this knowledge to incorporate hotspot 
patrols into practical crime prevention efforts (Ariel 
et al., 2020; Braga et al., 2019). Although several studies 
have used points of interests (POI) and street network 
centralities as micro-scale indicators, finding theoreti-
cally relevant data at this spatial scale is still challeng-
ing. Note that a POI is a specific entity or facility, such 
as a convenience store or parking lot, with a well-defined 
location denoted primarily by geographical coordinates.

Several environmental criminological theories, such 
as defensible space (Newman, 1972), crime prevention 
through environmental design (CPTED; Jeffery, 1971), 
and routine activity theory (Cohen & Felson, 1979), sug-
gest that crime risks are determined by the geographic 
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visible elements of places. Sherman et al., (1989) defined 
place as “a fixed physical environment that can be seen 
completely and simultaneously, at least on its surface, 
by one’s naked eyes.” Considering these points, large-
scale photographic images composed of visible features 
in streetscapes, such as Google Street View (GSV), are 
expected to be a useful data source for environmental 
criminology research at the spatial place scale (hereafter 
called place-scale) (Vandeviver, 2014).

Using GSV, Langton & Steenbeek (2017) evaluated sur-
veillability scores, such as the number of windows and 
the front door visibility from the street; accessibility, such 
as a burglar alarm; and the existence of amenities, such 
as plant pots and benches in public spaces, and found 
that buildings with higher surveillability scores were at 
a lower risk of being victims of residential burglary. He 
et  al., (2017) also used GSV to audit physical incivility 
indicators (litter, graffiti, etc.), defensible space indicators 
(walls, fences, hedges, etc.), and territorial functioning 
indicators (trees, shrubs, gardens, etc.) to quantitatively 
analyze the association between the incidence of violent 
crime and the built environment. They analyzed vio-
lent crime and socio-economic indicators using Pois-
son regression with eigenvector-based spatial filtering 
and audited the built environment of the sites selected 
from the result of regression analysis using GSV. Conse-
quently, they showed that sites where crime is over-esti-
mated tend to have low physical incivility indicators but 
high defensible space and territorial functioning indica-
tors, and vice versa.

However, such an approach to systematic social obser-
vation using GSV images involves the time-consuming 
and human-dependent task of extracting built-environ-
ment indicators from GSV images using the naked eye. 
To overcome these problems, this study applied machine 
learning to automatically obtain streetscape indica-
tors that might help explain crime patterns from the 
collected GSV images. Computer vision technologies 
with deep learning at their core have developed dra-
matically during the last decade. This has made it pos-
sible to mechanically extract the features of streetscapes 
from a large number of streetscape images such as GSV. 
We also have easy access to pre-trained semantic seg-
mentation models, making these automated processes 
relatively easy to implement. Several studies have used 
automated approaches to detect major streetscape com-
ponents in GSV images (Amiruzzaman et al., 2021; Deng 
et al., 2022; Hipp et al., 2021; Khorshidi et al., 2021; Zhou 
et al., 2021). Classes detected by semantic segmentation 
are often denoted as “segments,” but in this paper, we 
denote them as “components” to distinguish them from 
“street segments.” Hipp et al. (2021) extracted streetscape 
components from GSV images and compared the rates 

of components in an image with the occurrence of vari-
ous crimes (aggravated assault, robbery, burglary, motor 
vehicle theft, and larceny). Zhou et al. (2021) found that 
the locations where drug activity occurs are likely to have 
a higher percentage of traffic signs, roads, and building 
components in a streetscape image, suggesting that the 
composition of streetscape components in street-view 
images can be a useful indicator of whether a location 
is well-managed. Hence, the automated approach to 
extracting streetscape components from GSV through 
deep learning offers new possibilities for understanding 
the risk of place-scale crime occurrence.

Note, however, that whether a streetscape component 
promotes or deters crime is not easily generalized and 
might be context dependent. For example, consider the 
effect of the presence of vegetation on crime risks. Vege-
tation may create opportunities for crime because it may 
be used by offenders to hide themselves or stolen goods 
(Michael et  al., 2001). According to CPTED, removing 
trees is recommended in cases where the trees block 
the lines of sight and may attenuate natural surveillance 
(Crowe, 2000). On the other hand, some studies have 
shown that plants significantly reduce the risk of crime in 
urban centers and residential areas (Du & Law, 2016; Kuo 
& Sullivan, 2001).

Well-managed vegetation in cities can be thought of 
as improving territoriality and enhancing natural sur-
veillance by increasing opportunities for people to pay 
attention and stay. Thus, the effect of vegetation on crime 
can be both positive and negative, depending on the sur-
rounding conditions (Donovan & Prestemon, 2012; Troy 
et  al., 2016). Similarly, it has been suggested that walls 
and fences be removed or made permeable if they inter-
fere with natural surveillance, while they may also serve 
as physical barriers to reinforce territoriality, contrib-
uting to crime risk reduction (Crowe, 2000; Newman, 
1972). This indicates that the same streetscape compo-
nents may produce different affordances depending on 
other components as well as crime type and modus oper-
andi. Such complex effects can be captured as the inter-
action effects of streetscape components on crime risks 
in statistical modeling.

Previous studies using automated techniques to obtain 
streetscape indicators via GSV and machine learn-
ing have not investigated such complex relationships 
among streetscape indicators, i.e., their interaction 
effects. Therefore, we highlight the interaction effects of 
streetscape components in the modeling of the risk of 
crime occurrence in this study. Specifically, we examined 
the risk of theft from vehicle (TFV) occurrence in the city 
of Kyoto, Japan using streetscape indices detected by a 
pre-trained machine learning (semantic segmentation) 
model to explore how the interactions of streetscape 
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components contribute to the effective modeling of 
the TFV risk on streets. In the statistical modeling, we 
employed commonly used micro-scale indicators, net-
work centrality measures, and proximity measures to 
POIs as control variables to assess how streetscape com-
ponents improve such a spatial analysis of crime risk on 
streets.

Methods
Crime occurrence data
The study area is located in the central district of Kyoto 
City, Japan. The city was founded in 794 and maintains 
the old Japanese townscape with narrow streets in a grid 
pattern. Currently, it is one of the 20 largest cities in 
Japan, with a population of over one million. The target 
area for this analysis was the three central wards of Kyoto 
(Fig. 1). According to the 2015 census in Japan, the pop-
ulation, areal size, and population density of the target 
area are 277,122 persons, 21.22 km2, and 13,059 persons 
per km2, respectively.

The analysis used crime occurrence data of all TFV 
(n = 500) recorded by the Kyoto Prefectural Police 
Department between January 1, 2015, and December 
31, 2018, in the target area. As the analysis unit, we cre-
ated points at 10-m intervals on the street network data 
of the area, which are based on ArcGIS Geo Suite Road 
Network 2021 from ESRI Japan Inc. We generated the 
interval points on the streets using the QChainage plugin 
in QGIS. Further, we snapped the TFV occurrence to 
the nearest 10-m interval points on the street network. 

The street points nearest to the location where the TFV 
occurred were considered to be the locations where the 
TFV occurred. The crime occurrence locations were reg-
istered by indicating the locations on a zoomable digital 
map of the Kyoto Prefectural Police GIS. Although there 
is a certain margin of error for the indication, the size is 
quite small compared to the 10 m analysis unit. Further-
more, as all registrations were verified at headquarters, 
we considered these TFV location data sufficiently accu-
rate for our analysis.

We focused on the TFVs that occurred on the street to 
assess the association between TFV risk and streetscape 
characteristics. Therefore, a building polygon layer by the 
Geospatial Information Authority of Japan was overlaid 
on the target area to filter out the TFVs occurring inside 
buildings, such as multistory parking lots (n = 333). In 
addition, we excluded TFVs that occurred over 20  m 
away from the points on the street because, even if the 
assigned point is outside a building, an occurrence far 
away from the street, such as in a large parking lot, is not 
considered to have occurred on the street. Ultimately, 
278 TFV incidents satisfied these conditions (Fig.  1). 
The mean and median of the distances between all crime 
locations and the point where the GSV was taken were 
8.23 and 7.73 m, respectively.

Streetscape indicators
We used the percentage of each component in a GSV 
image as a streetscape index. Using the Street View Static 
API provided by Google, we obtained two street-view 

Fig. 1  Street network and density of theft from vehicles in the study area. a Street network and road length of each road component. b Kernel 
density estimation of the theft from vehicles
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images of 640 × 640 pixels and classified each image pixel 
via the PSPNet semantic segmentation model (Zhao, 
2019; Zhao et  al., 2017). The acquisition points of the 
GSV images were assigned to the nearest points on the 
street, within 10  m. The percentage of each component 
in an image was defined as the ratio of the pixels of each 
component class to the total pixels of the image (Fig. 2). 
We used the PSPNet semantic segmentation model 
trained on the Cityscapes dataset (Cordts et  al., 2016), 
consisting of 19 classes (road, sidewalk, building, wall, 
fence, pole, traffic light, traffic sign, vegetation, terrain, 
sky, person, rider, car, truck, bus, train, motorcycle, and 
bicycle).

The streetscape characteristics often discussed in envi-
ronmental criminology include security features, windows, 
graffiti, and potted plants. Ideally, to automatically detect 
these features, a new image segmentation model that has 
learned those components should be built. However, build-
ing such a model in a short time is difficult owing to the 
huge computation and annotation costs involved. In this 
study, we therefore used an accessible model trained on 
19 streetscape indicators from the Cityscapes dataset. We 
used these streetscape indicators in our modeling and 
exploratory interpretation of the results. The Cityscapes 
dataset is composed of streetscape images captured with 
a camera mounted behind the windshield of a car. We 
inspected some of the side-view GSV image pairs and 
found that few images were too close to buildings or walls, 
resulting in streetscapes not being captured. Therefore, 
we used GSV images of the car (Cordts et al., 2016) in the 
forward and backward street directions. In this study, we 
adopted PSPNet with an input size of 713 × 713 pixels and 
ResNet101 as the feature extractor, trained on 2,975 train-
ing data points from the Cityscapes dataset, and attained 
a relatively high accuracy of 79.63% mIoU on a 500-test 

dataset (Zhao, 2019). Table  1 lists the streetscape indices 
obtained from the street points used in this study.

Street network indicators
Street network centrality has been used as a micro-scale 
indicator of crime occurrence (Yamamura et  al., 2019). 
Using the Urban Network Analysis Toolbox (City Form 
Lab, 2016), we computed the network centralities of streets 
to characterize street morphological features. In this study, 
three indices were used as control variables: betweenness 
centrality, straightness centrality, and closeness centrality. 
As shown in Additional file 1: Fig. S1, the street network 
in this study was prepared by considering intersections as 
nodes and road segments as edges. Subsequently, nodes 
were added at the centroid of each street segment; the net-
work has two types of nodes, intersections and street seg-
ment centroids. To calculate each centrality, we counted 
only the nodes of the street segment centroid (hereafter 
referred to as centroid node), following earlier studies (Kim 
& Hipp, 2020; Yamamura et al., 2019):

where i , j, and k are indices of centroid nodes, r is the 
preset maximum network distance from centroid node 
i , G is the graph, njk [i] is the number of shortest paths 

Betweenness[i]r =
∑

j,k∈G−{i},d[j,k]≤r

njk [i]

njk
,

Closeness[i]r =
1

∑

j∈G−{i},d[i,j]≤r

(

d[i, j]
) ,

Straightness[i]r =
∑

j∈G−{i},d[i,j]≤r

δ[i, j]

d[i, j]
,

Segments %
Road 16.05 
Sidewalk 1.52 
Building 25.42 
Wall 1.79 
Fence 1.73 
Pole 1.11 
Traffic light 0.00 
Traffic sign 0.12 
Vegetation 19.90 
Terrain 0.01 
Sky 31.86 
Person 0.07 
Rider 0.00 
Car 0.43 
Truck 0.00 
Bus 0.00 
Train 0.00 
Motorcycle 0.00 
Bicycle 0.00 

(a) (b) (c)
Segments %
Road 40.08 
Sidewalk 0.01 
Building 23.67 
Wall 0.02 
Fence 2.63 
Pole 0.56 
Traffic light 0.00 
Traffic sign 0.21 
Vegetation 26.32 
Terrain 0.00 
Sky 5.65 
Person 0.44 
Rider 0.35 
Car 0.01 
Truck 0.00 
Bus 0.00 
Train 0.00 
Motorcycle 0.00 
Bicycle 0.06 

Segments %
Road 28.06 
Sidewalk 0.77 
Building 24.55 
Wall 0.90 
Fence 2.18 
Pole 0.84 
Traffic light 0.00 
Traffic sign 0.16 
Vegetation 23.11 
Terrain 0.00 
Sky 18.76 
Person 0.25 
Rider 0.18 
Car 0.22 
Truck 0.00 
Bus 0.00 
Train 0.00 
Motorcycle 0.00 
Bicycle 0.03 

Fig. 2  Example of semantic segmentation result and percentage of each component (Source: Authors’ photos). a Forward of road. b Backward of 
road. c Average of (a) and (b)
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between j and k that pass through i , njk is the number of 
shortest paths between j and k , d[i, j] is the shortest road 
distance between i and j , δ[i, j] is the Euclidean distance 
between i and j . The “graph” is the entire street network, 
and the “paths” are the routes from one centroid node to 
the other on the graph. In this study, r was calculated for 
two patterns: 100 m (1-min walking distance) and 400 m 
(5-min walking distance). In addition, each indicator was 
calculated, including the street network outside the tar-
get area, to suppress the edge effect.

These indices were standardized using the following 
definitions:

where

Betweenness is the number of target streets traversed 
when traveling the shortest distance between the 

Betweenness[i]rnorm =
Betweenness[i]r

Reach[i]r ×
(

Reach[i]r − 1
) ,

Closeness[i]rnorm = Closeness[i]r × Reach[i]r ,

Straightness[i]rnorm =
Straightness[i]r

Reach[i]r
,

Reach[i]r =
∑

j∈G−{i},d[i,j]≤r

1.

centroids. It is assumed to represent the popularity of 
a street for walking around and, therefore, the number 
of potential people moving from one place to another. 
Potential offenders may expect that streets with high 
betweenness provide a high probability of encounter-
ing appropriate targets for criminal activities (Kelsay 
& Haberman, 2020). Closeness is the reciprocal of the 
sum of the shortest distance between the target cen-
troid to other centroids. This centrality is interpreted 
as the ease of moving to other streets representing the 
number of escape routes for criminal offenders (Mah-
foud et  al., 2020; Yamamura et  al., 2019). Straightness 
is the ratio of the road distance to the Euclidean dis-
tance from the target centroid to the other centroids. 
Straightness is related to the linearity of the street, with 
sinuous streets favoring crime and straight streets hin-
dering crime owing to the possibility of visual supervi-
sion by capable guardians (Davies & Johnson, 2015).

In addition, we used the street length and width as 
classic attributes of a street for our control variables 
analysis. Street length is defined as a continuous vari-
able (meter); street width is defined as a categorical 
variable having three levels (3–5.5  m, 5.5–13  m, and 
13 m or more; an approximate road width of 5.5 m cor-
responds to two lanes, and 13  m corresponds to four 
lanes) following ArcGIS Geo Suite Road Network 2021 
made by ESRI Japan Inc. See figure S2, Additional file 1 
for the computed results of each centrality in our study 
area.

Table 1  Summary statistics of extracted components from Google Street View images

Component Mean Min 1st quantile Median 3rd quantile Max

Building 40.91 0.49 32.34 41.56 50.47 81.35

Road 32.16 7.76 28.89 32.69 36.04 45.73

Sky 15.27 0.00 9.58 14.85 20.56 41.37

Vegetation 4.66 0.00 0.55 1.89 5.40 53.26

Sidewalk 2.32 0.00 1.10 2.00 3.12 10.28

Car 1.55 0.00 0.22 0.83 2.32 16.74

Fence 0.95 0.00 0.00 0.15 1.08 10.94

Pole 0.47 0.00 0.11 0.32 0.65 4.82

Person 0.45 0.00 0.08 0.20 0.48 6.02

Wall 0.31 0.00 0.00 0.00 0.13 8.40

Truck 0.26 0.00 0.00 0.00 0.03 12.53

Terrain 0.20 0.00 0.00 0.01 0.14 9.09

Bicycle 0.20 0.00 0.00 0.00 0.17 4.63

Motorcycle 0.14 0.00 0.00 0.00 0.04 6.35

Traffic sign 0.10 0.00 0.00 0.02 0.08 3.03

Bus 0.04 0.00 0.00 0.00 0.00 9.73

Rider 0.02 0.00 0.00 0.00 0.00 1.28

Traffic light 0.01 0.00 0.00 0.00 0.00 0.77

Train 0.00 0.00 0.00 0.00 0.00 1.15
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Surrounding facility indicators
Ohyama & Amemiya (2018) used a negative binomial 
regression model for risk terrain modeling with the num-
ber of TFV incidents as the dependent variable and the 
proximities of parking lots, convenience stores, depart-
ment stores/supermarkets, family/fast food restaurants, 
coffee shop chain stores, parks, and total street length 
as major independent variables. They confirmed the sig-
nificant association of the risk of TFV occurrence with 
proximity to the surrounding facilities. Following this, we 
used similar proximity measures of the following facili-
ties as a control variable in this study: transportation-
related facilities (stations, bus stops, parking lots, gas 
stations), food and beverage service facilities (family/fast 
food restaurants), shopping facilities (convenience stores, 
supermarkets), educational facilities (nursery schools/
kindergartens, schools (elementary, junior high, and high 
schools), universities/colleges/vocational schools), down-
town facilities (snack bars/pubs/clubs, pachinko parlors), 
and other facilities (parks/green spaces). A dichotomized 
variable was made about whether these facilities were 
included within a 100-m radius of a street point (no: 0, 
yes: 1) (See Additional file  1: Table  S1). Information on 
each facility was collected from NAVITIME, a Japanese 
navigation service from NAVITIME JAPAN Co., Ltd.

Statistical analysis
The assigned street points of the crime occurrence loca-
tion were considered positive examples (n = 261), and 
negative examples were randomly sampled from other 
street points (twice as large as the positive examples, 
n = 522). We sampled the negative examples to be sepa-
rated at least 50 m from other points to avoid overlapping 
of the same locations.

We then fitted a binomial logistic regression model 
to the combined dataset, including positive and nega-
tive examples (n = 783), to predict the probability of 
TFV occurrence on a street point. We applied the step-
wise method based on the Akaike Information Criterion 
(AIC) to select variables. We considered two models and 
compared their performances: one without streetscape 
indicators (Model A) and one with streetscape indicators 
(Model B). In Model B, the interaction terms between 
streetscape indices were considered using the complex-
ity of crime risk regulated by multiple aspects of street 
environments. Each continuous variable was standard-
ized. Note that each variable with interaction satisfies the 
principle of marginality (Venables & Ripley, 1997), which 
includes the main effect term of each variable constitut-
ing the interaction term.

In the logistic regression modeling, the effect of the 
explanatory variable on the target variable changes by 
one unit, depending on the value of the explanatory 

variable. Furthermore, in models that include interaction 
terms, the relationship between the explanatory variable 
and a specific target variable cannot be intuitively inter-
preted using only the estimated coefficients. Therefore, 
the average marginal effects (AME) were computed to 
interpret the estimated effects of each streetscape com-
ponent on the crime occurrence risk. AME is the aver-
age effect on the predicted value (marginal effect) of a 
unit change in an explanatory variable for every sample 
(Leeper, 2017). In this study, we used the margins pack-
age of R (version 0.3.26) to calculate the AME.

Results
Tables  2 and 3 present the results of each binomial 
logistic regression model. Table  4 presents the confu-
sion matrices of each model. The Area Under the Curve 
(AUC) of Models A and B was 0.66 and 0.70, and their 
AIC was 964.1 and 943.7, respectively. Thus, we showed 
that the model that considered streetscape indicators 
attained a better performance. Note that the maximum 
and mean values of the Variance Inflation Factor (VIF) 
were 3.86 and 1.74 for Model A and 3.78 and 1.77 for 
Model B, indicating that the effect of multicollinearity 
was reasonably low for each model.  

Focusing on the main effect variables that were statis-
tically significant (p < 0.05) of Model B, the results indi-
cated that the risk of TFV tended to increase on streets 
near convenience stores [0.64; 95% CI (0.28, 1.00)] and 
gas stations [1.14; 95% CI (0.35, 1.97)]. In particular, con-
venience stores have often been interpreted as crime gen-
erators or attractors (Brantingham & Brantingham, 1995; 
Ohyama & Amemiya, 2018). This is because convenience 

Table 2  Results of binomial logistic regression without 
streetscape indicators (Model A)

CI confidence interval, AIC Akaike Information Criterion
a p < 0.001
b p < 0.01
c p < 0.05
d p < 0.1

Log odds 95% CI p-value

(Intercept) − 1.02 [− 1.21, − 0.83]  < 0.001a

Convenience stores 0.70 [0.36, 1.03]  < 0.001a

Gas stations 1.02 [0.25, 1.84] 0.011c

Street length − 0.28 [− 0.54, − 0.03] 0.031c

Closeness (100 m) − 0.24 [− 0.47, − 0.00] 0.046c

Straightness (400 m) 0.17 [0.00, 0.35] 0.052d

Parks/Green spaces 1.32 [− 0.02, 2.78] 0.057d

Pachinko parlors 0.62 [− 0.12, 1.37] 0.099d

AIC 964.10

Nagelkerke pseudo 
R-squared

0.08
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stores are open till late night, frequented by several peo-
ple, and probably have a high concentration of vehicles 
parked in the vicinity. Proximity to gas stations was also 
associated with an elevated TFV risk in this study. This 
is similar to previous studies that reported proximity to 
gas stations as a risk factor for crimes such as robbery 
(Bernasco and Block, 2011; Barnum et  al., 2017). Street 
length [− 0.30; 95% CI (− 0.59, − 0.01)] and straightness 
(100  m) [−  0.19, (−  0.37, 0.00)] were negatively associ-
ated with TFV risk.

Most of the statistically significant (p < 0.05) variables 
are interaction terms with streetscape indicators, includ-
ing (building) [hereinafter the standardized value of the 
percentage of the component in a streetscape image 
is presented in square brackets, such as “(component 

name)”], (wall), (fence), (sidewalk), (vegetation), and 
(road).

For example, (vegetation) had a statistically signifi-
cant interaction effect with (building), (wall), and (side-
walk) [regression coefficients of (vegetation): −  0.32; 
95% CI (−  0.65, −  0.01), (vegetation) × (building): 
−  0.29; 95% CI (−  0.48, −  0.11), (vegetation) × (wall): 
−  0.34; 95% CI (−  0.62, −  0.12), (vegetation) × (side-
walk): −  0.14; 95% CI (−  0.30, −  0.01)]. Focusing on 
the interaction term between streetscape indicators, 
we attempted to interpret (vegetation) × (building) and 
(vegetation) × (wall). The AME of (vegetation) was neg-
ative over the entire range, and as expected, the TFV 
risk decreased with increasing (vegetation) (Fig. 3a).

The effect of (vegetation) on the TFV risk value 
depended on the values of (building) and (wall). For 
example, when there are no walls [(wall) ≅ −  0.37], 
the AME of (vegetation) is positive when there are few 
(building) but negative when there are many (build-
ing) (Fig.  3b). However, when there are many walls 
[(wall) ≅ 0.85], the AME of (vegetation) becomes more 
negative as (building) increases. This indicates that in a 
streetscape with a relatively large number of walls and 
buildings, the amount of vegetation tends to be asso-
ciated with lower TFV risk. For example, the sample 
of streetscapes with few (wall) and (building) has a low 
predicted TFV risk of 0.29 in the case of few (vegeta-
tion) (Fig. 4a left), and a high value of 0.83 in the case of 
much [vegetation] (Fig.  4a right). In a streetscape with 
more (wall) and (building), the TFV risk becomes as high 
as 0.56 in the sample with few (vegetation) (Fig. 4b left) 
and as low as 0.01 in the sample with much (vegetation) 
(Fig. 4b right).

As another example, (building) also had statistically 
significant interaction terms with (vegetation), (road), 
and (sidewalk) [regression coefficients of (building): 0.03; 
95% CI (−  0.27,0.33), (building) × (vegetation): −  0.29; 
95% CI (−  0.48, −  0.11), (building] × [road): 0.24; 95% 
CI (0.08, 0.41), (building) × (sidewalk): −  0.30; 95% CI 
(− 0.52, − 0.09)]. The confidence interval for AME con-
tains zero for the entire range of (building), which makes 
it unclear whether (building) is positively or negatively 
related to the TFV risk (Fig.  5a). However, the AME 
of (building) for the case with few (sidewalk) [(side-
walk) ≅ −  0.74] was found to be significantly positive 
only for the case with more (road) (Fig. 5b). When there 
are many (sidewalk) [(sidewalk) ≅ 0.49], the range of 
(road) for which (building) has a positive AME becomes 
narrower, and that confidence interval will now include 
zero. This result suggests that in a streetscape with many 
roads and few sidewalks, a higher occupancy of building 

Table 3  Results of binomial logistic regression with streetscape 
indicators and their interaction terms (Model B)

 × Denotes interaction

CI confidence interval, AIC Akaike information criterion
a p < 0.001
b p < 0.01
c p < 0.05
d p < 0.1

Log odds 95% CI p-value

(Intercept) − 1.07 [− 1.31, − 0.84]  < 0.001a

Convenience stores 0.64 [0.28, 1.00]  < 0.001a

Wall × Fence 0.27 [0.12, 0.44]  < 0.001a

Vegetation × Build-
ing

− 0.29 [− 0.48, − 0.11] 0.002b

Building × Road 0.24 [0.08, 0.41] 0.003b

Street length − 0.30 [− 0.51, − 0.10] 0.004b

Gas stations 1.14 [0.35, 1.97] 0.005b

Building × Sidewalk − 0.30 [− 0.52, − 0.09] 0.007b

Vegetation × Wall − 0.34 [− 0.62, − 0.12] 0.011c

Straightness 
(100 m)

− 0.19 [− 0.37, 0.00] 0.045c

Vegetation − 0.32 [− 0.65, − 0.01] 0.050c

Road 0.27 [− 0.01, 0.55] 0.057d

Vegetation × Side-
walk

− 0.14 [− 0.30, 0.01] 0.066d

Pachinko parlors 0.67 [− 0.10, 1.45] 0.088d

Parks/Green spaces 1.18 [− 0.27, 2.72] 0.113

Fence − 0.16 [− 0.37, 0.04] 0.132

Sidewalk − 0.09 [− 0.27, 0.09] 0.346

Wall − 0.04 [− 0.27, 0.17] 0.737

Building 0.03 [− 0.27, 0.33] 0.834

AIC 943.66

Nagelkerke pseudo 
R-squared

0.15
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components increases the TFV risk. Figure 6 shows sam-
ples of streetscape images with few sidewalks and many 
roads. The TFV risk is as low as 0.14 for the sample with 
few sidewalks and buildings, whereas the risk value is as 
high as 0.56 for the sample with few sidewalks and many 
buildings.

Discussion
This study considered the use of interaction terms to clar-
ify the complex relationships between geographical envi-
ronments regulating TFV risk at the place-scale. First, 
we compared the model with and without streetscape 
indicators. The results confirmed that the model with the 
streetscape indicators and their interaction terms pro-
vides a better performance: lower AIC, higher F-measure, 

Table 4  Confusion matrices and evaluation metrics for the estimated model

Predicted

True False Total

(a) Without streetscape indicators

 Actual True 50 211 261

False 32 490 522

Total 82 701 783

 Accuracy 0.690

 Recall 0.192

 Precision 0.610

 F-measure 0.292

 AUC​ 0.655

(b) With streetscape indicators and their interaction terms

 Actual True 70 191 261

False 46 474 522

Total 118 665 783

 Accuracy 0.695

 Recall 0.268

 Precision 0.593

 F-measure 0.369

 AUC​ 0.701

Fig. 3  Estimated effects of vegetation on the occurrence risk of theft from vehicle. a Average marginal effect and estimated probability of the 
occurrence of theft from vehicle for vegetation. b When there is no wall (− 0.37). c When the percentage of wall in a streetscape image equals its 
third quantile value (0.85)
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and higher AUC. This indicates that streetscape indica-
tors contribute to investigating the risk of crime at the 
place-scale. As expected, there appeared significant 
interaction terms related to streetscape indicators, indi-
cating that landscape indicators become more meaning-
ful in a combination of ways. Among such streetscape 
indicators, the percentages of vegetation and buildings 
are included in the significant interaction terms in our 

statistical modeling result, thus we focus on discussing 
the interactions of streetscape indicators.

The estimated negative relationship between (vegeta-
tion) and the risk of crime occurrence is consistent with 
previous studies (Kuo & Sullivan, 2001; Wolfe & Men-
nis, 2012). However, our study also clarifies that the 
effect of (vegetation) on the TFV risk depends on (wall) 
and (building) in a streetscape image. According to 
CPTED, vegetation and walls can sometimes interfere 

Predicted Probability: 0.83
Building: -2.09
Vegetation: 7.12

Predicted Probability: 0.29
Building: -1.55
Vegetation: -0.65

Predicted Probability: 0.56
Building: 2.96
Vegetation: -0.52

Predicted Probability: 0.01
Building: 1.85
Vegetation: 0.61

(a)

(b)

(c)
The amount of 

buildings and walls

The amount of 
vegetation

The amount of 
vegetation

HighLow

HighLowHighLow

Presence of
capable
guardian

Absence of 
capable
guardian

TFV riskTFV risk

Absence of 
natural 

surveillance

Presence of 
natural 

surveillance

TFV riskTFV risk

Fig. 4  Sample streetscape images for demonstrating the relationship between the amount of vegetation and the risk of theft from vehicle (TFV) 
(Source: Authors’ photos). a Streetscape with no walls and few buildings. b Streetscape with many walls and buildings. c Conceptual diagram of the 
relationship between streetscape compositions and the TFV risk

Fig. 5  Estimated effects of building on the occurrence risk of theft from vehicle. a Average marginal effect and estimated probability of the 
occurrence risk of theft from vehicle for building. b When the percentage of sidewalk in a streetscape image equals its first quantile value (− 0.74). c 
When that of sidewalk equals its third quantile value (0.49)
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with natural surveillance (Crowe, 2000; Reynald, 2009), 
but how about buildings? We calculated Pearson’s cor-
relation coefficients among streetscape indicators and 
found relatively strong negative correlations between 
(building) and (road) (r = −  0.65) and between (build-
ing) and (sky) (r = −  0.71) (See Additional file  1: 
Table S3). This result indicates that buildings may have 
a blocking effect on visibility and that higher percent-
ages of walls and buildings in images are related to 
lower visibility of the streetscape in our study area. 
Although we would expect to have more “eyes on the 
street” (Jacobs, 1961) enhancing natural surveillance, 
streetscapes with many walls and buildings may result 
in limited visibility, attenuating natural surveillance. In 
such an environment, the presence of vegetation may 
create a sense of managed space, enhancing the ter-
ritoriality of the neighborhood and making offenders 
aware of the presence of capable guardianship, result-
ing in reduced crime risk (Fig.  4b and c). However, in 
an environment with few buildings and walls, excessive 
vegetation may limit visibility, reducing natural surveil-
lance and increasing crime risk (Fig.  4a and c). Thus, 
the interaction terms allow us to integrate the oppos-
ing arguments about whether vegetation increases or 
decreases the risk of crime. Note that we have offered 
only one possible interpretation of the building com-
ponents in streetscape images. Buildings having many 
windows may engender natural surveillance by resi-
dents (Newman, 1972). Therefore, our interpreta-
tions should be verified by future studies assessing the 
relationship between visibility and the components of 
streetscape images.

(Building) alone does not appear to be associated 
with the risk of crime occurrence. However, our results 
show a more complex association through the interac-
tion terms of TFV risk and (building), (sidewalk), and 
(road). Street environments with fewer sidewalks have 

a higher risk of crime than those with more building. 
A street environment with few sidewalks is considered 
a street not designed for large numbers of pedestrians. 
On the other hand, in environments with many side-
walks, one no longer finds a relationship between build-
ing and crime risk. If, as in the previous discussion, 
(building) is related to visibility, then natural surveil-
lance may decrease with more buildings in environ-
ments where many pedestrians do not appear (Fig. 6).

This study shows for the first time the importance 
of using interactions between streetscape indica-
tors for comprehending the place-scale risk of crime 
occurrence. Nagata et  al., (2020) successfully analyzed 
streetscape walkability in detail using streetscape indi-
cators obtained by semantic segmentation of GSV 
and their interaction terms for walkability. Similarly, 
in environmental criminology, the interaction terms 
between streetscape indicators may provide clues to 
understanding the visible landscape compositions 
associated with the risk of crime occurrence at the 
place-scale.

This study has several limitations. First, GSV images 
are streetscapes, as seen from the roadway, because GSV 
images are acquired from cameras mounted on cars. 
However, because TFV offenders approach their targets 
by walking, the GSV images should be strictly analyzed in 
terms of the streetscape, as seen from the sidewalk. Sec-
ond, GSV does not consider the difference in streetscape 
by year or season because the year and month when GSV 
was taken are not uniform. Further studies are needed on 
the effects of these limitations on the use of GSV in the 
analysis results. In addition, the streetscape index defined 
in this study is only a limited feature of occupancy rate 
by semantic segmentation. In actual streetscapes, it may 
be necessary to handle additional information, such as 
the location of components (e.g., buildings and vegeta-
tion being adjacent to each other), depth, and brightness. 

Predicted Probability: 0.14
Building: -1.49
Road: 0.25

Predicted Probability: 0.56
Building: 0.40
Road: 0.23

Fig. 6  Sample streetscape images with few sidewalks and many roads. (Source: Authors’ photos). The figure on the left shows a streetscape with a 
low building component percentage, that on the right shows a streetscape with a high building component percentage
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Furthermore, we used 19 general classes of streetscape 
indicators defined by the Cityscapes dataset in this study, 
which is still insufficient to conduct a detailed analysis 
following the theories of environmental criminology.

Future studies should consider more theoretically 
motivated components of streetscapes associated with 
the risk of crime occurrence, such as security cameras, 
windows of buildings, and graffiti. In the future, it will 
be necessary to consider how to handle such information 
and assess the risk value using more realistic street envi-
ronmental indicators.

Prior work includes methods to obtain feature vectors 
from the middle layer of a convolutional neural network 
trained on an image classification task (Kang & Kang, 
2017; Zhang et al., 2020) and object detection to identify 
the location and number of objects (Dakin et al., 2020). 
We can select or combine other such methods accord-
ing to the study purpose. In addition, instance segmenta-
tion and panoptic segmentation, which are extensions of 
semantic segmentation, would allow us to acquire more 
features. New technologies, such as monocular depth 
estimation techniques, are also being developed. It is 
anticipated that various features of streetscapes will be 
obtained using automated approaches and used in crime 
research in the future.

Conclusion
This study assessed the risk of TFV crime using place-
scale geographic environmental indicators in a Japanese 
city. The indicators, composed of streetscape indicators 
obtained from streetscape images with deep learning, 
clarified the relationships between place-scale environ-
ments and the risk of crime occurrence on the street. 
Some of the results were consistent with previous stud-
ies and may be explained by the classic theory of envi-
ronmental criminology. Through the interaction terms 
of the environmental indicators, we comprehended the 
complex and interdependent relationships between envi-
ronmental factors and the crime occurrence risk at the 
place-scale; for example, we observed that the association 
of vegetation with the risk of TFV can be both positive 
and negative depending on the number of buildings and 
walls. Further research is needed to unravel the com-
plexity of the contribution of streetscape composition to 
crime risk in different geographical and criminological 
contexts.
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